• Infrared and Laser Engineering
  • Vol. 52, Issue 8, 20230403 (2023)
Pengfei Li1、2, Fei Zhang1、2, Kai Li1、2, Chen Cao1、2, Yan Li1、2, Jiachao Zhang1、2, Bingzheng Yan1、2, Zhenxu Bai1、2, Yu Yu1、2, Zhiwei Lv1、2, and Yulei Wang1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230403 Cite this Article
    Pengfei Li, Fei Zhang, Kai Li, Chen Cao, Yan Li, Jiachao Zhang, Bingzheng Yan, Zhenxu Bai, Yu Yu, Zhiwei Lv, Yulei Wang. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230403 Copy Citation Text show less
    References

    [1] International Electrotechnical Commission. Safety of laser productsPart 1: Equipment classification requirments (IEC 608251:2014) [SOL]. (20200915)[20230508]. https:wcbst e.iec.chpublication3587.

    [2] K O Wang, C Q Gao, Z F Lin, et al. 1 645 nm coherent Doppler wind lidar with a single-frequency Er: YAG laser. Optics Express, 28, 14694-14704(2020).

    [3] S Kameyama, M Imaki, Y Hirano, et al. Development of 1.6 µm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing. Optics Letters, 34, 1513-1515(2009).

    [4] X Shang, H Xia, X K Dou, et al. Adaptive inversion algorithm for 1.5 μm visibility lidar incorporating in situ angstrom wavelength exponent. Optics Communications, 418, 129-134(2018).

    [5] Kuan Li, Tingwei Ben, Chunting Wu, et al. Development of 1.6-μm Er: YAG solid-state laser for lidar. Microwave & Optical Technology Letters, 5, 1512-1534(2023).

    [6] M Hintikka, J Kostamovaara. Experimental investigation into laser ranging with sub-ns laser pulses. IEEE Sensors Journal, 18, 1047-1053(2018).

    [7] Liu H, Zhang Y, Sun K, et al. Pose measurement of robot arm end based on laser range finders[C]IEEE International Conference on Advanced Intelligent Mechatronics, 2015: 12241228.

    [8] Li Tingquan. Research on key technology of eyesafe laser ranging [D]. Chengdu: Sichuan University of Electronic Science Technology of China, 2018. (in Chinese)

    [9] Zhang Wei. Research on 1.57 μm eyesafe laser [D]. Changchun: Changchun University of Science Technology, 2013. (in Chinese)

    [10] Steinvall O, Persson R, Berglund F, et al. Using an eyesafe military laser range finder f atmospheric sensing[C]Proceedings of the SPIE, 2014, 9080: 90800W.

    [11] Boucher J F, Callahan J J. Ultrahighintensity 1550nm single junction pulsed laser diodes [C]Laser Technology f Defense Security VII, 2011, 8039: 19.

    [12] Liping Liu. 57 μm OPO eye-safe laser.. Laser & Infrared, 33, 300-303(2003).

    [13] G Huber, C Kränkel, K Petermann. Solid-state lasers: status and future [Invited]. Journal of the Optical Society of America B, 27, 93-105(2010).

    [14] Shibata Yasukuni, Nagasawa Chikao, Abo Makoto. Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles. Applied Optics, 56, 1194-1201(2017).

    [15] Xianglong Cai, Zhanghui Li, Dong Liu, . High energy pulsed laser in 1.6 μm waveband based on deuterium gas stimulated Raman scattering. Chinese Journal of Lasers, 49, 1101001(2022).

    [16] Frank F W, Pierce J W. A high peak power, compact, eyesafe optical parametric oscillat system[C]Proceedings of the SPIE, 2010, 7582: 75820H.

    [17] Rui Song, Shanghua Li, Chaoyong Chen, . 1645-nm single-frequency pulsed Er∶YAG ceramic Laser. Chinese Journal of Lasers, 48, 0501012(2021).

    [18] Yuqi Li, Zhenxu Bai, Hui Chen, et al. Eye-safe diamond Raman laser. Results in Physics, 16, 102853(2020).

    [19] L Fornasiero, K Petermann, E Heumann, et al. Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 μm. Optical Materials, 10, 9-17(1998).

    [20] S D Setzle, M P Francis, Y E Young, et al. Resonantly pumped eyesafe erbium lasers. EEE Journal of Selected Topics in Quantum Electronics, 11, 645-657(2005).

    [21] M A Jebali, J N Maran, S Larochelle. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping. Opt Lett, 39, 3974-3977(2014).

    [22] Lin H, Feng Y, Barua P, et al. 405 W erbiumdoped largece fiber laser[C]OSA: Advanced Solid State Lasers (2017), 2017: Article ATh4A2.

    [23] C Larat, M Schwarz, E Lallier, et al. 120 mJ Q-switched Er:YAG laser at 1645 nm. Optics Express, 22, 4861-4866(2014).

    [24] B Q Yao, Y Deng, T Y Dai, et al. Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator. Quantum Electronics, 45, 709-712(2015).

    [25] Chunqing Gao, Yang Shi, Qing Ye, et al. 10 mJ single-frequency, injection-seeded Q-switched Er:YAG laser pumped by a 1470 nm fiber-coupled LD. Laser Physics Letters, 15, 025003(2018).

    [26] Shi Yang, Chunqing Gao, Shuo Wang, et al. High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture. Optics Express, 27, 2671-2680(2019).

    [27] Shanghua Li, Qing Wang, Rui Song, et al. Laser diode pumped high-energy single-frequency Er:YAG laser with hundreds of nanoseconds pulse duration. Chinese Optics Letters, 3, 44-48(2020).

    [28] Guo Baoping, Josh Foster, Susanne Lee, et al. Qswitched, high energy, high repetition rate, minilaser transmitters at 1.54 μm [C]Proceedings of the SPIE, 2023, 12399: 1239908.

    [30] X H Chen, P Li, X Y Zhang, et al. Eye-safe Raman laser at 1 532 nm with BaWO4 crystal. Laser Physics, 21, 2040-2044(2011).

    [31] Hongbin Shen, Qingpu Wang, Ping Li, et al. Diode-side-pumped Nd:YAG/BaWO4 dual-wavelength Raman laser emitting at 1 502 and 1 527 nm. Optics Communications, 306, 165-169(2013).

    [32] Y X Fan, Y Liu, Y H Duan, et al. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal. Applied Physics B, 93, 327-330(2008).

    [33] N Takei, S Suzuki, F Kannari. 20 Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal. Applied Physics B, 74, 521-527(2002).

    [34] P V Shpak, S V Voitikov, R V Chulkov, et al. Passively Q-switched diode-pumped Raman laser with third-order Stokes eye-safe oscillation. Optics Communications, 285, 3659-3664(2012).

    [35] Qian Wu, Zeliang Gao, Bingzheng Yan, et al. A novel multi-functional crystal: Self-acousto-optic Q-switch Raman laser based on α-BaTeMo2O9 crystal. IEEE Photonics Technology Letters, 20, 1299-1302(2020).

    [36] J T Murray, C R Powell, N Peyghambarian, et al. Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals. Optics Letters, 20, 1017-1019(1995).

    [37] R A Major, J S Aitchison, P W E Smith, et al. Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5 microm spectral region by use of a KGd(WO4)2 crystal. Optics Letters, 4, 421-423(2005).

    [38] P G Zverev, L I Ivleva. Eye-safe Nd: YVO4 laser with intracavity SRS in a BaWO4 crystal. Quantum Electronics, 42, 27-30(2012).

    [39] Fen Bai, Qingpu Wang, Xutang Tao, et al. Eye-safe Raman laser based on BaTeMo2O9 crystal. Applied Physics B, 116, 501-505(2013).

    [40] Huanian Zhang, Ping Li. High-efficiency eye-safe Nd: YAG/SrWO4 Raman laser operating at 1664 nm. Applied Physics B, 122, 12(1)(2016).

    [41] I A Gorbunov, O V Kulagin, A M Sergeev. Eye-safe picosecond Raman laser. Quantum Electronics, 46, 863-869(2016).

    [42] Li Fan, Jun Shen, Xiaoyu Wang, et al. Efficient continuous-wave eye-safe Nd:YVO4 self-Raman laser at 1.5 µm. Optics Letters, 13, 3183-3186(2021).

    [43] V A Lisinetskii, H J Eichler, H Rhee, et al. The generation of high pulse and average power radiation in eye-safe spectral region by the third stokes generation in barium nitrate Raman laser. Optics Communications, 281, 2227-2232(2008).

    [44] Zhenxu Bai, Xuezong Yang, Hui Chen, . Research progress of high-power diamond laser technology (Invited). Infrared and Laser Engineering, 12, 20201076(2020).

    [45] R J Williams, D J Spence, O Lux, et al. High-power continuous-wave Raman frequency conversion from 1.06 microm to 1.49 microm in diamond. Optics Express, 25, 749-757(2017).

    [46] K C Lee, B J Sussman, J Nunn, et al. Comparing phonon dephasing lifetimes in diamond using transient coherent Ultrafast phonon spectroscopy. Diamond and Related Materials, 19, 1289-1295(2010).

    [47] A A Kaminskii, R J Hemley, J Lai, et al. High-order stimulated Raman scattering in CVD single crystal diamond. Laser Physics Letters, 4, 350-353(2007).

    [48] Thomas M E. Multiphonon model f absption in diamond[C]Proc of SPIE, 1994, 2286: 152159.

    [49] Hird J R, J Rabeau. Optical Engineering of Diamond[C]Optical Engineering of Diamond, 2013.

    [50] V G Savitski, S Reilly, A J Kemp. Steady-state Raman gain in diamond as a function of pump wavelength. IEEE Journal of Quantum Electronics, 49, 218-223(2013).

    [51] R J Williams, O Kitzler, A Mckay, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping. Optics Letters, 39, 4152-4155(2014).

    [52] R J Williams, J Nold, M Strecker, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser & Photonics Reviews, 9, 405-411(2015).

    [53] A Mckay, O Kitzler, R P Mildren. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser. Laser & Photonics Reviews, 8, 37-41(2014).

    [54] Z Bai, R J Williams, O Kitzler, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Optics Express, 26, 19797-19803(2018).

    [55] R Casula, J P Penttinen, A J Kemp, et al. 1.4 microm continuous-wave diamond Raman laser. Optics Express, 25, 31377-31383(2017).

    [56] Houjie Ma, Xin Wei, Shibo Dai, et al. Intra-cavity diamond Raman laser at 1634 nm. Optics Express, 29, 31156-31163(2021).

    [57] R Kington. Parametric amplification and oscillation at optical frequencies. Proceedings of the Institute of Radio Engineers, 50, 472(1962).

    [58] N M Kroll. Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies. Physical Review, 127, 1207-1211(1962).

    [59] J A Giordmaine, R C Miller. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Physical Review Letters, 14, 973-976(1965).

    [60] Rines G A, Rines D M, Moulton P F. Effcient, highenergy, KTP optical parametric oscillats pumped with 1 micron NdLasers [C]Advanced Solid State Lasers, 1994, 20: PO9.

    [61] F Elsen, M Livrozet, M Strotkamp, et al. Demonstration of a 100 mJ OPO/OPA for future lidar applications and laser-induced damage threshold testing of optical components for MERLIN. Optical Engineering, 57, 1-4(2018).

    [62] M Peltz, U Bäder, Y A Borsutzky, et al. Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA. Applied Physics B: Lasers and Optics, 73, 663-670(2001).

    [63] Gang Li, Zili Ning, Aifen Yang, . Eye-safe repetition laser based on optical parametric oscillator. Journal of Applied Optics, 32, 579-581(2011).

    [64] M Kaskow, L Gorajek, W Zendzian, et al. MW peak power KTP-OPO-based “eye-safe” transmitter. Opto-Electronics Review, 26, 188-193(2018).

    [65] M S Webb, P F Moulton, J J Jeffrey, et al. High-average-power KTiOAsO4 optical parametric oscillator. Optics Letters, 23, 1161-1163(1998).

    [66] J Liu, Q Liu, L Huang, et al. High energy eye-safe and mid-infrared optical parametric oscillator. Laser Physics Letters, 7, 853-856(2010).

    [67] Foltynowicz R J, Wojcik M D. Demonstration of a high output power 1 533 nm optical parametric oscillat pumped at 1 064 nm[C]Proceedings of the SPIE, 2010, 7838: 783815.

    [68] Baoquan Yao, Yuezhu Wang, Youlun Ju, . Tunable eye-safe Laser based on KTP optical parametric oscillator. Chinese Journal of Lasers, 27, 1017-9(2000).

    [69] K Zhong, J L Mei, Y Liu, et al. Widely tunable eye-safe optical parametric oscillator with noncollinear phase-matching in a ring cavity. Optics Express, 27, 10449-10455(2019).

    [70] Q Liu, Z Zhang, J Liu, et al. 100 Hz high energy KTiOAsO4 optical parametric oscillator. Infrared Physics & Technology, 61, 287-289(2013).

    [71] Armstrong Darrell J, Smith Arlee V. 150mJ 1550nm KTA OPO with good beam quality high efficiency [C]Proceedings of the SPIE, 2004, 5284: 528436.

    [72] Jun Meng, Zhenhua Cong, Zhigang Zhao, . 100 Hz high-energy KTA dual-wavelength optical parametric oscillator. Chinese Journal of Lasers, 48, 1201009(2021).

    [73] J Meng, C Li, Z Cong, et al. Investigations on beam quality improvement of an NCPM- KTA-based high energy optical parametric oscillator using an unstable resonator with a Gaussian reflectivity mirror[Invited]. Chinese Optics Letters, 20, 091401(2022).

    CLP Journals

    [1] Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730

    Pengfei Li, Fei Zhang, Kai Li, Chen Cao, Yan Li, Jiachao Zhang, Bingzheng Yan, Zhenxu Bai, Yu Yu, Zhiwei Lv, Yulei Wang. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230403
    Download Citation