• Infrared and Laser Engineering
  • Vol. 52, Issue 8, 20230403 (2023)
Pengfei Li1、2, Fei Zhang1、2, Kai Li1、2, Chen Cao1、2, Yan Li1、2, Jiachao Zhang1、2, Bingzheng Yan1、2, Zhenxu Bai1、2, Yu Yu1、2, Zhiwei Lv1、2, and Yulei Wang1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    DOI: 10.3788/IRLA20230403 Cite this Article
    Pengfei Li, Fei Zhang, Kai Li, Chen Cao, Yan Li, Jiachao Zhang, Bingzheng Yan, Zhenxu Bai, Yu Yu, Zhiwei Lv, Yulei Wang. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230403 Copy Citation Text show less
    Blue line: Atmospheric transmittance; Red line: Maximum permissible exposure [2]
    Fig. 1. Blue line: Atmospheric transmittance; Red line: Maximum permissible exposure [2]
    Energy level jump diagram of Er3+ doped crystal
    Fig. 2. Energy level jump diagram of Er3+ doped crystal
    Transmission spectral range of diamond crystals (uncoated)[44]
    Fig. 3. Transmission spectral range of diamond crystals (uncoated)[44]
    Schematic diagram of the high-power diamond Raman laser[45]
    Fig. 4. Schematic diagram of the high-power diamond Raman laser[45]
    Schematic of wavelength tunable diamond Raman laser[55]
    Fig. 5. Schematic of wavelength tunable diamond Raman laser[55]
    Physical diagram of the OPO/OPA laser system[61]
    Fig. 6. Physical diagram of the OPO/OPA laser system[61]
    Pump spot and pulse width tunable OPO laser [62]
    Fig. 7. Pump spot and pulse width tunable OPO laser [62]
    Transmission rate of laser in KTA and KTP crystals at different wavelengths
    Fig. 8. Transmission rate of laser in KTA and KTP crystals at different wavelengths
    Ring cavity of KTA-OPO[65]
    Fig. 9. Ring cavity of KTA-OPO[65]
    Diagram of high conversion efficiency OPO optical path[66]
    Fig. 10. Diagram of high conversion efficiency OPO optical path[66]
    Physical view of ring cavity KTA-OPO[67]
    Fig. 11. Physical view of ring cavity KTA-OPO[67]
    Diagram of the wavelength-tunable OPO experimental setup[69]
    Fig. 12. Diagram of the wavelength-tunable OPO experimental setup[69]
    Diagram of the high-energy KTA-OPO experimental setup at 100 Hz[70]
    Fig. 13. Diagram of the high-energy KTA-OPO experimental setup at 100 Hz[70]
    Schematic diagram of the experimental setup of KTA-OPO system[73]
    Fig. 14. Schematic diagram of the experimental setup of KTA-OPO system[73]
    Center wavelength/µmSingle-pulse energy/mJPulse width/nsFrequency/HzM2xM2yEnergy stabilityLinewidth/MHzYear
    1.64120100302, 2.5--2014[23]
    1.6452.9160100---2015[24]
    1.64510.12052001.4, 1.341.5%2.442018[25]
    1.64520.31102001.27, 1.30.61%4.592019[26]
    1.64528.61592001.37, 1.092.1%3.42020[27]
    1.64522.75223.12001.16, 1.150.5%2.462021[17]
    1.541.310100-0.28%-2023[28]
    Table 1. Example of obtaining a laser in the band near 1.6 µm using Er3+doped crystal as the gain medium
    Crystal Raman materialRaman shift /cm−1Raman linewidth /cm−1Heat conductivity/W·m−1·K−1Spectral transmission /μm
    Ba(NO3)210470.41.170.35-1.8
    KGd(WO4)29015.42.60.34-5.5
    BaWO49261.63.00.26-3.7
    BaTeMo2O99215.61.260.38-5.53
    SrWO4924.233.03.1330.263-3.2
    YVO48903.05.20.4-5
    Table 2. Raman frequency shift, Raman linewidth, heat conductivity of conventional gain media
    Crystal Raman material Pump light wavelength/µm Raman light wavelength/µm Output power/WOutput laser frequency Light-light conversion efficiency Stokes orderLinewidth/nmYear
    Ba(NO3)21.321.560.251 Hz48%1-1995[36]
    KGd(WO4)21.351.5371.2×10−51 kHz10%1202005[37]
    BaWO41.31.5360.715 kHz44%1-2012[38]
    BaTeMo2O91.3421.5310.8325 kHz7.7%10.062013[39]
    SrWO41.4441.6641.1610 kHz4.2%1-2016[40]
    Ba(NO3)21.3191.53550 Hz-1-2016[41]
    Nd:YVO41.3421.5240.685-4.8%10.32021[42]
    Table 3. Relevant research progress of conventional gain dielectric Raman lasers
    Pengfei Li, Fei Zhang, Kai Li, Chen Cao, Yan Li, Jiachao Zhang, Bingzheng Yan, Zhenxu Bai, Yu Yu, Zhiwei Lv, Yulei Wang. Research progress of high-frequency and high-energy solid state lasers at 1.6 µm (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230403
    Download Citation