• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 046002 (2023)
Zheng Ge1、2, Zhi-Yuan Zhou1、2、*, Jing-Xin Ceng3, Li Chen1、2, Yin-Hai Li1、2, Yan Li1、2, Su-Jian Niu1、2, and Bao-Sen Shi1、2、*
Author Affiliations
  • 1University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China
  • 2University of Science and Technology of China, CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, China
  • 3Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin, China
  • show less
    DOI: 10.1117/1.APN.2.4.046002 Cite this Article Set citation alerts
    Zheng Ge, Zhi-Yuan Zhou, Jing-Xin Ceng, Li Chen, Yin-Hai Li, Yan Li, Su-Jian Niu, Bao-Sen Shi. Thermal camera based on frequency upconversion and its noise-equivalent temperature difference characterization[J]. Advanced Photonics Nexus, 2023, 2(4): 046002 Copy Citation Text show less
    References

    [1] J. Li et al. Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Opt. Express, 20, 7590(2012).

    [2] D. Wang et al. Estimating clear-sky all-wave net radiation from combined visible and shortwave infrared (VSWIR) and thermal infrared (TIR) remote sensing data. Remote Sens. Environ., 167, 31-39(2015).

    [3] S. M. Mintenig et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res., 108, 365-372(2017).

    [4] T. P. Wrobel, R. Bhargava. Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences. Anal. Chem., 90, 1444-1463(2018).

    [5] J. Nallala et al. Enhanced spectral histology in the colon using high-magnification benchtop FTIR imaging. Vib. Spectrosc., 91, 83-91(2017).

    [6] L. Wang, B. Mizaikoff. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal. Bioanal. Chem., 391, 1641-1654(2008).

    [7] A. Soibel et al. Free space optical communication utilizing mid-infrared interband cascade laser. Proc. SPIE, 7587, 75870S(2010).

    [8] F. Bellei et al. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications. Opt. Express, 24, 3248(2016).

    [9] B. M. Walsh, H. R. Lee, N. P. Barnes. Mid infrared lasers for remote sensing applications. J. Lumin., 169, 400-405(2016).

    [10] M. N. Abedin, M. G. Mlynczak, T. F. Refaat. Infrared detectors overview in the short-wave infrared to far-infrared for CLARREO mission. Proc. SPIE, 7808, 78080V(2010).

    [11] A. Barh et al. Parametric upconversion imaging and its applications. Adv. Opt. Photonics, 11, 952(2019).

    [12] S. Baldelli. Infrared image upconversion. Nat. Photonics, 5, 75-76(2011).

    [13] S.-K. Liu et al. Up-conversion imaging processing with field-of-view and edge enhancement. Phys. Rev. Appl., 11, 044013(2019).

    [14] Z. Ge et al. Up-conversion detection of mid-infrared light carrying orbital angular momentum. Chin. Phys. B, 31, 104210(2022).

    [15] T. W. Neely et al. Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide. Opt. Lett., 37, 4332(2012). https://doi.org/10.1364/OL.37.004332

    [16] K.-D. Buchter et al. Nonlinear optical down- and up-conversion in PPLN waveguides for mid-infrared spectroscopy(2009).

    [17] Q. Zhou et al. Ultrasensitive mid-infrared up-conversion imaging at few-photon level. Appl. Phys. Lett., 102, 241110(2013).

    [18] K. Huang et al. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Res., 9, 259(2021).

    [19] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photonics, 6, 788-793(2012).

    [20] M. Mancinelli et al. Mid-infrared coincidence measurements on twin photons at room temperature. Nat. Commun., 8, 15184(2017).

    [21] K. Karstad et al. Detection of mid-IR radiation by sum frequency generation for free space optical communication. Opt. Lasers Eng., 43, 537-544(2005).

    [22] R. L. Pedersen et al. Characterization of the NEP of mid-infrared upconversion detectors. IEEE Photonics Technol. Lett., 31, 681-684(2019).

    [23] S. Leclercq. Discussion about noise equivalent power and its use for photon noise calculation.

    [24] J. S. Pelc et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express, 19, 21445(2011).

    [25] S. Junaid et al. Video-rate, mid-infrared hyperspectral upconversion imaging. Optica, 6, 702(2019).

    [26] S. Junaid et al. Mid-infrared upconversion based hyperspectral imaging. Opt. Express, 26, 2203(2018).

    [27] N. Sanders et al. Multispectral mid-infrared imaging using frequency upconversion. Proc. SPIE, 8604, 86040R(2013).

    [28] H. Suchowski, G. Porat, A. Arie. Adiabatic processes in frequency conversion: adiabatic processes in frequency conversion. Laser Photonics Rev., 8, 333-367(2014).

    [29] K. Huang et al. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun., 13, 1077(2022).

    [30] A. Barh, C. Pedersen, P. Tidemand-Lichtenberg. Ultra-broadband mid-wave-IR upconversion detection. Opt. Lett., 42, 1504(2017).

    [31] A. Redjimi et al. Noise equivalent temperature difference model for thermal imagers, calculation and analysis. Sci. Tech. Rev., 64, 42-49(2014).

    Zheng Ge, Zhi-Yuan Zhou, Jing-Xin Ceng, Li Chen, Yin-Hai Li, Yan Li, Su-Jian Niu, Bao-Sen Shi. Thermal camera based on frequency upconversion and its noise-equivalent temperature difference characterization[J]. Advanced Photonics Nexus, 2023, 2(4): 046002
    Download Citation