• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 5, 576 (2020)
Min ZHONG1、* and Xian-Chun SHI2
Author Affiliations
  • 1Hezhou University, Hezhou542899, China
  • 2School of Mechanical Engineering, Anhui University of Science and Technology,Huainan232001, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.05.007 Cite this Article
    Min ZHONG, Xian-Chun SHI. Realization of a multiband metamaterial waveguide based on dirac semimetal in the 800~1100nm range[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 576 Copy Citation Text show less
    References

    [1] C Liu, P Liu, C Yang et al. Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial. Carbon, 142, 354-362(2019).

    [2] D R Smith, J B Pendry, M C K Wiltshire, Metamaterials and. Science, 305, 788-792(2004).

    [3] X He, Y Yao, X Yang et al. Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications. Opt. Commun, 410, 206-210(2018).

    [4] M Badioli, A Woessner, K J Tielrooij et al. Phonon-mediated mid-Infrared photoresponse of grapheme. Nano Lett, 14, 6374-6381(2014).

    [5] T Liang, Q Gibson, M Ali et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater, 14, 280-284(2015).

    [6] S M Zhong, S L He, Ultrathin and, SCIENTIFIC REPORTS. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials, 3, 2083-2087(2013).

    [7] Z D Yong, S L Zhang, C S Gong et al. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Scientific Reports, 6, 24063-24069(2016).

    [8] J Mei, G C Ma, M Yang et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature communications, 3, 756-762(2011).

    [9] Y P Zhang, T T Li, Q Chen et al. Independently tunable dualband perfect absorber based on graphene at mid-infrared frequencies. Scientific Reports, 5, 18463-18470(2015).

    [10] G T Cao, H J Li, S P Zhan et al. Uniformtheoretical description of plasmon-induced transparency in plasmonic stubwaveguide. Opt. Lett, 39, 216-219(2014).

    [11] Y Deng, G T Cao, Y W Wu et al. Theoretical description of dynamic transmission characteristics in MDM waveguide aperture-side-coupled with ring cavity. Plasmonics, 10, 1537-1543(2015).

    [12] G Lai, R S Liang, Y J Zhang et al. Doubleplasmonic nanodisks design for electromagnetically induced transparencyand slow light. Opt. Express, 23, 6554-6561(2015).

    [13] Z He, H Li, B Li et al. Theoretical analysis of ultrahighfigure of merit sensing in plasmonic waveguides with a multimode stub. Opt.Lett, 41, 5206-5209(2016).

    [14] Y Huang, C J Min, G Veronis. Broadband near total light absorption innon-PT-symmetric waveguide-cavity systems. Opt. Express, 24, 22219-22231(2016).

    [15] L Chen, Y M Liu, Z Y Yu et al. Numerical analysis of anear-infrared plasmonic refractive index sensor with high figure of meritbased on a fillet cavity. Opt. Express, 24, 9975-9983(2016).

    [16] A B Yankovich, R Verre, E Olsén et al. Electron-Energy Loss Study of Nonlocal Effects in Connected Plasmonic Nanoprisms. ACS Nano, 11, 4265-4274(2017).

    [17] C Zeng, Y D Cui. Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide. Opt Commun, 290, 188-191(2013).

    [18] L L Huang, X Z Chen, B F Bai et al. Dependent Directional Surface Plasmon Polariton Excitation Using A Metasurface with Interfacial Phase Discontinuity. Light-Sci. Appl, 2, 70-76(2013).

    [19] H X Fu, S L Li, Y Wang, Let al. Generation of polarization-locked vector solitons in mode-locked thulium fiber laser. IEEE Photonics J, 10, 1500308-1500316(2018).

    [20] S L Li, Y L Wang, R Z Jiao et al. Fano resonances based on multimode and degenerate mode interference in plasmonic. Opt. Exp, 25, 3525-3533(2017).

    [21] Z Chen, L Yu, Multiple Fano. IEEE Photonics J, 6, 1-8(2014).

    [22] C Li, S L Li, Y L Wang et al. Multiple Fano Resonances Based on Plasmonic Resonator System With End-Coupled Cavities for High-Performance Nanosensor. IEEE Photonics J, 9, 1-9(2017).

    [23] Q Wang, Z B Ouyang, M Lin et al. Independently tunable Fano resonance based on the coupled hetero cavities in a plasmonic MIM system. Materials, 11, 1675-1684(2018).

    [24] G Zheng, H Zhang, L Bu et al. Tunable Fano resonances in midinfrared waveguide-coupled otto configuration. Plasmonics, 13, 215-220(2018).

    [25] X C Yia, J P Tiana, R C Yanga, Tunable Fano. Optik - International Journal for Light and Electron Optics, 171, 139-148(2018).

    [26] O V Kotov, Y E Lozovik, Dielectric response. Phys. Rev. B, 93, 235417(2016).

    [27] T Timusk, J P Carbotte, C C Homes et al. Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity. Phys. Rev. B, 87, 235121(2013).

    [28] I Zand, A Mahigir, T Pakizeh et al. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators. Opt. Express, 20, 7516-7525(2012).

    [29] D R Smith, S Schult, P Markos et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys.Rev. B, 65, 195104-195108(2002).

    [30] X J Piao, S Yu, S Koo et al. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express, 19, 10907-10912(2001).

    [31] Y Yao, M A Kats, P Genevet et al. Broad electrical tuning of grapheneloaded plasmonic antennas. Nano Lett, 13, 1257-1264(2013).

    [32] Z Li, N Yu, Modulation of. Appl. Phys. Lett, 102, 131108(2013).

    [33] J Hwang, J W Roh, Electrically tunable. Opt.Express, 25, 25071-25078(2017).

    Min ZHONG, Xian-Chun SHI. Realization of a multiband metamaterial waveguide based on dirac semimetal in the 800~1100nm range[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 576
    Download Citation