• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 6, 2240007 (2022)
Lu Guo1, Bo Xu2, Haobin Chen3, and Ying Tang1、*
Author Affiliations
  • 1Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, P. R. China
  • 2Department of Urology, The First Hospital of Jilin University, Changchun 130021 P. R. China
  • 3Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, P. R. China
  • show less
    DOI: 10.1142/S1793545822400077 Cite this Article
    Lu Guo, Bo Xu, Haobin Chen, Ying Tang. Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240007 Copy Citation Text show less
    References

    [1] D. E. Dolmans, D. Fukumura, R. K. Jain. Photodynamic therapy for cancer. Nat. Rev. Cancer., 3, 380-387(2003).

    [2] M. Triesscheijn, P. Baas, J. H. Schellens, F. A. Stewart. Photodynamic therapy in oncology. Oncologist, 11, 1034-1044(2006).

    [3] N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 18, 1580-1585(2012).

    [4] M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 40, 340-362(2011).

    [5] M. Niedre, M. S. Patterson, B. C. Wilson. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol., 75, 382-391(2002).

    [6] J. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng. Activatable photosensitizers for imaging and therapy. Chem. Rev., 110, 2839-2857(2010).

    [7] S. Cui, D. Yin, Y. Chen, Y. Di, H. Chen, Y. Ma, S. Achilefu, Y. Gu. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano, 7, 676-688(2013).

    [8] W. Fan, P. Huang, X. Chen. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev., 45, 6488-6519(2016).

    [9] S. S. Lucky, K. C. Soo, Y. Zhang. Nanoparticles in photodynamic therapy. Chem. Rev., 115, 1990-2042(2015).

    [10] M. Rojnik, P. Kocbek, F. Moret, C. Compagnin, L. Celotti, M. J. Bovis, J. H. Woodhams, A. J. MacRobert, D. Scheglmann, W. Helfrich, M. J. Verkaik, E. Papini, E. Reddi, J. Kos. In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine, 7, 663-677(2012).

    [11] W. S. Chenggen Qian, J. Yu, Y. Chen, Q. Hu, X. Xiao. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater., 28, 3313-3320(2016).

    [12] K. Liu, X. Liu, Q. Zeng, Y. Zhang, L. Tu, T. Liu, X. Kong, Y. Wang, F. Cao, S. A. G. Lambrechts, M. C. G. Aalders, H. Zhang. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano, 6, 4054-4062(2012).

    [13] M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, X. Chen. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy. Nanoscale, 6, 8274-8282(2014).

    [14] G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, Y. Zhao. Mn 2+ dopant-controlled synthesis of NaYF 4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater., 24, 1226-1231(2012).

    [15] B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 5, 1086-1094(2011).

    [16] L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui, J. Li. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano, 6, 8030-8040(2012).

    [17] J. Qian, A. Gharibi, S. He. Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy. J. Biomed. Opt., 14, 014012(2009).

    [18] I. T. Teng, Y. J. Chang, L. S. Wang, H. Y. Lu, L. C. Wu, C. M. Yang, C. C. Chiu, C. H. Yang, S. L. Hsu, J. A. Ho. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34, 7462-7470(2013).

    [19] Z. X. Zhao, Y. Z. Huang, S. G. Shi, S. H. Tang, D. H. Li, X. L. Chen. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy. Nanotechnology, 25, 285701(2014).

    [20] L. Shi, B. Hernandez, M. Selke. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J. Am. Chem. Soc., 128, 6278-6279(2006).

    [21] J. M. Tsay, M. Trzoss, L. Shi, X. Kong, M. Selke, M. E. Jung, S. Weiss. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J. Am. Chem. Soc., 129, 6865-6871(2007).

    [22] C. Wu, D. T. Chiu. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed., 52, 3086-3109(2013).

    [23] J. Pecher, S. Mecking. Nanoparticles of conjugated polymers. Chem. Rev., 110, 6260-6279(2010).

    [24] C. Wu, Y. Jin, T. Schneider, D. R. Burnham, P. B. Smith, D. T. Chiu. Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. Angew. Chem., Int. Ed., 49, 9436-9440(2010).

    [25] C. Wu, T. Schneider, M. Zeigler, J. Yu, P. G. Schiro, D. R. Burnham, J. D. McNeill, D. T. Chiu. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc., 132, 15410-15417(2010).

    [26] F. Ye, C. Wu, Y. Jin, M. Wang, Y. H. Chan, J. Yu, W. Sun, S. Hayden, D. T. Chiu. A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chem. Commun., 48, 1778-1780(2012).

    [27] S. Kim, C. K. Lim, J. Na, Y. D. Lee, K. Kim, K. Choi, J. F. Leary, I. C. Kwon. Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem. Commun., 46, 1617-1619(2010).

    [28] C. Wu, S. J. Hansen, Q. Hou, J. Yu, M. Zeigler, Y. Jin, D. R. Burnham, J. D. McNeill, J. M. Olson, D. T. Chiu. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed., 50, 3430-3434(2011).

    [29] K. Pu, N. Chattopadhyay, J. Rao. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J. Control. Release, 240, 312-322(2016).

    [30] H. Zhu, Y. Fang, X. Zhen, N. Wei, Y. Gao, K. Q. Luo, C. Xu, H. Duan, D. Ding, P. Chen, K. Pu. Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem. Sci., 7, 5118-5125(2016).

    [31] X. Zhen, C. Zhang, C. Xie, Q. Miao, K. L. Lim, K. Pu. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano., 10, 6400-6409(2016).

    [32] Q. Miao, Y. Lyu, D. Ding, K. Pu. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH. Adv. Mater., 28, 3662-3668(2016).

    [33] Y. Lyu, Y. Fang, Q. Miao, X. Zhen, D. Ding, K. Pu. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano, 10, 4472-4481(2016).

    [34] Y. H. Chan, C. Wu, F. Ye, Y. Jin, P. B. Smith, D. T. Chiu. Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Anal. Chem., 83, 1448-1455(2011).

    [35] F. Ye, C. Wu, Y. Jin, Y. H. Chan, X. Zhang, D. T. Chiu. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc., 133, 8146-8149(2011).

    [36] J. H. Moon, E. Mendez, Y. Kim, A. Kaur. Conjugated polymer nanoparticles for small interfering RNA delivery. Chem. Commun., 47, 8370-8372(2011).

    [37] Y. Lyu, C. Xie, S. A. Chechetka, E. Miyako, K. Pu. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc., 138, 9049-9052(2016).

    [38] S. Li, K. Chang, K. Sun, Y. Tang, N. Cui, Y. Wang, W. Qin, H. Xu, C. Wu. Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy. ACS Appl. Mater. Interfaces, 8, 3624-3634(2016).

    [39] Y. Tang, H. Chen, K. Chang, Z. Liu, Y. Wang, S. Qu, H. Xu, C. Wu. Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy. ACS Appl. Mater. Interfaces, 9, 3419-3431(2017).

    [40] C. T. Kuo, A. M. Thompson, M. E. Gallina, F. Ye, E. S. Johnson, W. Sun, M. Zhao, J. Yu, I. C. Wu, B. Fujimoto, C. C. Dufort, M. A. Carlson, S. R. Hingorani, A. L. Paguirigan, J. P. Radich, D. T. Chiu. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat. Commun., 7, 1-11(2016).

    [41] D. Chen, I. C. Wu, Z. Liu, Y. Tang, H. Chen, J. Yu, C. Wu, D. T. Chiu. Semiconducting polymer dots with bright narrow-band emission at 800nm for biological applications. Chem. Sci., 8, 3390-3398(2017).

    [42] H. Park, K. Na. Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy. Biomaterials, 34, 6992-7000(2013).

    Lu Guo, Bo Xu, Haobin Chen, Ying Tang. Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240007
    Download Citation