• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071602 (2020)
Sihao Huang1、3, Zhengzheng Liu1、3, Juan Du1、2、3、*, and Yuxin Leng1、2、3、4、**
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
  • show less
    DOI: 10.3788/LOP57.071602 Cite this Article Set citation alerts
    Sihao Huang, Zhengzheng Liu, Juan Du, Yuxin Leng. Review of Perovskite Micro -and Nano-Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071602 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [3] Leonetti M, Conti C, López C. Random lasers: active mode control and gating[J]. Optics and Photonics News, 24, 29(2013).

    [4] Miller D. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).

    [5] Kim T. McCall J G, Jung Y H, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 340, 211-216(2013).

    [6] Hill M T, Gather M C. Advances in small lasers[J]. Nature Photonics, 8, 908-918(2014).

    [7] Blanche P A, Bablumian A, Voorakaranam R et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 468, 80-83(2010).

    [8] Johnson J C, Choi H J, Knutsen K P et al. Single gallium nitride nanowire lasers[J]. Nature Materials, 1, 106-110(2002).

    [9] Huang M H. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 292, 1897-1899(2001).

    [10] Ma R M, Ota S, Li Y M et al. Explosives detection in a lasing plasmon nanocavity[J]. Nature Nanotechnology, 9, 600-604(2014).

    [11] Guo P F, Zhuang X J, Xu J Y et al. Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires[J]. Nano Letters, 13, 1251-1256(2013).

    [12] Ji X Q, Li G H, Cui Y X et al. Research progress in organic-inorganic hybridized perovskite lasers[J]. Semiconductor Technology, 43, 401-413, 442(2018).

    [13] Choquette K D, Hou H Q. Vertical-cavity surface emitting lasers: moving from research to manufacturing[J]. Proceedings of the IEEE, 85, 1730-1739(1997).

    [14] Klimov V I. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 290, 314-317(2000).

    [15] Duan X F, Huang Y, Agarwal R et al. Single-nanowire electrically driven lasers[J]. Nature, 421, 241-245(2003).

    [16] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).

    [17] Altug H, Vuckovic J. Photonic crystal nanocavity array laser[J]. Optics Express, 13, 8819-8828(2005).

    [18] Zhang Q, Liu X F. Utama M I B, et al. Phonon-assisted anti-stokes lasing in ZnTe nanoribbons[J]. Advanced Materials, 28, 276-283(2016).

    [19] Veldhuis S A, Boix P P, Yantara N et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 28, 6804-6834(2016).

    [20] Fan F J, Voznyy O, Sabatini R P et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 544, 75-79(2017). http://www.nature.com/articles/doi:10.1038/nature21424

    [21] Jeon T, Kim S J, Yoon J et al. Hybrid perovskites: effective crystal growth for optoelectronic applications[J]. Advanced Energy Materials, 7, 1602596(2017).

    [22] Liao Q, Jin X, Fu H B. Tunable halide perovskites for miniaturized solid-state laser applications[J]. Advanced Optical Materials, 7, 1900099(2019).

    [23] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [24] Wang K, Subhani W S, Wang Y L et al. Metal cations in efficient perovskite solar cells: progress and perspective[J]. Advanced Materials, 31, 1902037(2019).

    [25] Wang K Y, Wang S, Xiao S M et al. Recent advances in perovskite micro- and nanolasers[J]. Advanced Optical Materials, 6, 1800278(2018).

    [26] Xing G C, Mathews N, Lim S S et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 13, 476-480(2014).

    [27] Zhang Q, Su R, Du W N et al. Advances in small perovskite-based lasers[J]. Small Methods, 1, 1700163(2017).

    [28] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 8, 506-514(2014).

    [29] Makarov S, Furasova A, Tiguntseva E et al. Halide-perovskite nanophotonics: halide-perovskite resonant nanophotonics (advanced optical materials 1/2019)[J]. Advanced Optical Materials, 7, 1970002(2019).

    [30] Jiang Y, Wang X, Pan A L. Properties of excitons and photogenerated charge carriers in metal halide perovskites[J]. Advanced Materials, 31, 1806671(2019).

    [31] Saba M, Cadelano M, Marongiu D et al. Correlated electron-hole plasma in organometal perovskites[J]. Nature Communications, 5, 5049(2014).

    [32] Wang Y, Li X M, Song J Z et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 27, 7101-7108(2015).

    [33] Chan Y, Steckel J S, Snee P T et al. Blue semiconductor nanocrystal laser[J]. Applied Physics Letters, 86, 073102(2005).

    [34] Sutherland B R, Hoogland S, Adachi M M et al. Conformal organohalide perovskites enable lasing on spherical resonators[J]. ACS Nano, 8, 10947-10952(2014).

    [35] Yakunin S, Protesescu L, Krieg F et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 6, 8056(2015).

    [36] Papagiorgis P, Manoli A, Protesescu L et al. Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals[J]. ACS Photonics, 5, 907-917(2018).

    [37] Wang S, Yu J H, Zhang M Y et al. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy[J]. Nano Letters, 19, 6315-6322(2019).

    [38] Sutherland B R, Hoogland S, Adachi M M et al. Perovskite thin films via atomic layer deposition[J]. Advanced Materials, 27, 53-58(2015).

    [39] Huang L Y. Lambrecht W R L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3[J]. Physical Review B, 88, 165203(2013).

    [40] Noh J H, Im S H, Heo J H et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 13, 1764-1769(2013).

    [41] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).

    [42] Fu Y P, Zhu H M, Stoumpos C C et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. ACS Nano, 10, 7963-7972(2016).

    [43] Zhang Q, Su R, Liu X F et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 26, 6238-6245(2016).

    [44] Zhu H M, Fu Y P, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 14, 636-642(2015).

    [45] Fu Y P, Zhu H M, Schrader A W et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. Nano Letters, 16, 1000-1008(2016).

    [46] Hao F, Stoumpos C C. Chang R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 136, 8094-8099(2014).

    [47] Walters G, Sutherland B R, Hoogland S et al. Two-photon absorption in organometallic bromide perovskites[J]. ACS Nano, 9, 9340-9346(2015).

    [48] Gu Z Y, Wang K Y, Sun W Z et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J]. Advanced Optical Materials, 4, 472-479(2016).

    [49] Kalanoor B S, Gouda L, Gottesman R et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films[J]. ACS Photonics, 3, 361-370(2016).

    [50] Zhang W, Peng L, Liu J et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Advanced Materials, 28, 4040-4046(2016).

    [51] Gao Y S, Wang S, Huang C et al. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers[J]. Scientific Reports, 7, 45391(2017).

    [52] Liu Z Z, Hu Z P, Zhang Z Y et al. Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals[J]. ACS Photonics, 6, 3150-3158(2019).

    [53] Wang Y, Li X M, Zhao X et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 16, 448-453(2016).

    [54] Xu Y Q, Chen Q, Zhang C F et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J]. Journal of the American Chemical Society, 138, 3761-3768(2016).

    [55] Wang X X, Zhou H, Yuan S P et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing[J]. Nano Research, 10, 3385-3395(2017).

    [56] Yuan Z, Shu Y, Tian Y et al. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks[J]. Chemical Communications, 51, 16385-16388(2015).

    [57] Bekenstein Y, Koscher B A, Eaton S W et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 137, 16008-16011(2015).

    [58] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [59] Zhang Q, Ha S T, Liu X F et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 14, 5995-6001(2014).

    [60] Liao Q, Hu K, Zhang H H et al. Perovskite microdisk microlasers self-assembled from solution[J]. Advanced Materials, 27, 3405-3410(2015).

    [61] Li G H, Che T, Ji X Q et al. Nanodevices: record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite (adv. Funct. Mater. 2/2019)[J]. Advanced Functional Materials, 29, 1970012(2019).

    [62] Li B B, Zhou T J, Fang X et al. Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry-Pérot mode lasing[J]. Journal of Materials Chemistry C, 7, 4102-4108(2019).

    [63] Guo P F, Hossain M K, Shen X et al. Room-temperature red-green-blue whispering-gallery mode lasing and white-light emission from cesium lead halide perovskite (CsPbX3, X=Cl, Br, I) microstructures[J]. Advanced Optical Materials, 6, 1700993(2018).

    [64] Wang K Y, Sun S, Zhang C et al. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors[J]. Materials Chemistry Frontiers, 1, 477-481(2017).

    [65] Tang B, Dong H X, Sun L X et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 11, 10681-10688(2017).

    [66] Du W N, Zhang S, Wu Z Y et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities[J]. Nanoscale, 11, 3145-3153(2019).

    [67] Yang Z, Lu J F. ZhuGe M H, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing[J]. Advanced Materials, 31, 1900647(2019).

    [68] Zhizhchenko A, Syubaev S, Berestennikov A et al. Single-mode lasing from imprinted halide-perovskite microdisks[J]. ACS Nano, 13, 4140-4147(2019).

    [69] Huang C, Sun W Z, Liu S et al. Highly controllable lasing actions in lead halide perovskite-Si3N4 hybrid micro-resonators[J]. Laser & Photonics Reviews, 13, 1800189(2019).

    [70] Zhou B E, Jiang M M, Dong H X et al. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity[J]. ACS Photonics, 6, 793-801(2019).

    [71] Hu Z P, Liu Z Z, Bian Y et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability[J]. Advanced Optical Materials, 6, 1700997(2018).

    [72] Liu Z Z, Hu Z P, Shi T C et al. Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere[J]. Optics Express, 27, 9459-9466(2019).

    [73] Kurahashi N, Nguyen V C, Sasaki F et al. Whispering gallery mode lasing in lead halide perovskite crystals grown in microcapillary[J]. Applied Physics Letters, 113, 011107(2018).

    [74] Tang X S, Yang J, Li S Q et al. Quantum dots: single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties[J]. Advanced Science, 6, 1970107(2019).

    [75] Yang J, Liu Z Z, Zeng F J et al. High-quality single-mode lasers based on zero-dimensional cesium lead halide perovskites[J]. Solar RRL, 3, 1900127(2019).

    [76] Eaton S W, Fu A, Wong A B et al. Semiconductor nanowire lasers[J]. Nature Reviews Materials, 1, 16028(2016).

    [77] Ma Y G, Guo X, Wu X Q et al. Semiconductor nanowire lasers[J]. Advances in Optics and Photonics, 5, 216-273(2013).

    [78] Xing J, Liu X F, Zhang Q et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 15, 4571-4577(2015).

    [79] Eaton S W, Lai M L, Gibson N A et al. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 1993-1998(2016).

    [80] Park K, Lee J W, Kim J D et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers[J]. The Journal of Physical Chemistry Letters, 7, 3703-3710(2016).

    [81] Pushkarev A P, Korolev V I, Markina D I et al. Afew-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions[J]. ACS Applied Materials & Interfaces, 11, 1040-1048(2019).

    [82] Li Y, Guan S T, Liu Y et al. Lasing properties of cesium lead halide perovskite nanowires fabricated by one-drop self-assembly and ion-exchange methods[J]. Optics Express, 26, 33856-33864(2018).

    [83] Liu Z, Shang Q Y, Li C et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires[J]. Applied Physics Letters, 114, 101902(2019).

    [84] Liu P, He X X, Ren J H et al. Organic-inorganic hybrid perovskite nanowire laser arrays[J]. ACS Nano, 11, 5766-5773(2017).

    [85] Wang X X, Shoaib M, Wang X et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling[J]. ACS Nano, 12, 6170-6178(2018).

    [86] Hu Z P, Liu Z Z, Bian Y et al. Robustcesium lead halide perovskite microcubes for frequency upconversion lasing[J]. Advanced Optical Materials, 5, 1700419(2017).

    [87] Liu Z Z, Yang J, Du J et al. Robust subwavelength single-mode perovskite nanocuboid laser[J]. ACS Nano, 12, 5923-5931(2018).

    [88] Mi Y, Liu Z X, Shang Q Y et al. Fabry-pérot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities[J]. Small, 14, 1703136(2018).

    [89] Yang L, Li Z Q, Liu C et al. Temperature-dependent lasing of CsPbI3 triangular pyramid[J]. The Journal of Physical Chemistry Letters, 10, 7056-7061(2019).

    [90] Deschler F, Price M, Pathak S et al. Highphotoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. The Journal of Physical Chemistry Letters, 5, 1421-1426(2014).

    [91] Wang Y, Li X M, Nalla V et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 27, 1605088(2017).

    [92] Chen S T, Nurmikko A. Excitonic gain and laser emission from mixed-cation halide perovskite thin films[J]. Optica, 5, 1141-1149(2018).

    [93] Pourdavoud N, Haeger T, Mayer A et al. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films[J]. Advanced Materials, 31, 1903717(2019).

    [94] Saliba M, Wood S M, Patel J B et al. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 28, 923-929(2016).

    [95] Wiersma D S. The physics and applications of random lasers[J]. Nature Physics, 4, 359-367(2008).

    [96] Sapienza R. Determining random lasing action[J]. Nature Reviews Physics, 1, 690-695(2019).

    [97] Dhanker R, Brigeman A N, Larsen A V et al. Random lasing in organo-lead halide perovskite microcrystal networks[J]. Applied Physics Letters, 105, 151112(2014).

    [98] Liu S, Sun W Z, Li J K et al. Random lasing actions in self-assembled perovskite nanoparticles[J]. Optical Engineering, 55, 057102(2016).

    [99] Xu L, Meng Y, Xu C X et al. Room temperature two-photon-pumped random lasers inFAPbBr3/polyethylene oxide (PEO) composite perovskite thin film[J]. RSC Advances, 8, 36910-36914(2018).

    [100] Safdar A, Wang Y, Krauss T F. Random lasing in uniform perovskite thin films[J]. Optics Express, 26, A75-A84(2018).

    [101] Shirasaki Y, Supran G J, Bawendi M G et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 7, 13-23(2013).

    [102] Li X M, Wang Y, Sun H D et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing[J]. Advanced Materials, 29, 1701185(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201701185

    [103] Yuan S, Chen D Q, Li X Y et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J]. ACS Applied Materials & Interfaces, 10, 18918-18926(2018).

    [104] Wang Y C, Li H, Hong Y H et al. Flexibleorganometal-halide perovskite lasers for speckle reduction in imaging projection[J]. ACS Nano, 13, 5421-5429(2019).

    [105] Tang X S, Bian Y, Liu Z Z et al. Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes[J]. Optics Letters, 44, 4706-4709(2019).

    Sihao Huang, Zhengzheng Liu, Juan Du, Yuxin Leng. Review of Perovskite Micro -and Nano-Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071602
    Download Citation