• Infrared and Laser Engineering
  • Vol. 53, Issue 11, 20240430 (2024)
Shuyuan ZHANG1, Xijie ZHOU1, Jianlei CUI1, Runze FAN1..., Herui XIE1,2 and Xuesong MEI1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China
  • 2Xi’an Space Engine Co. Ltd., Xi’an 710061, China
  • show less
    DOI: 10.3788/IRLA20240430 Cite this Article
    Shuyuan ZHANG, Xijie ZHOU, Jianlei CUI, Runze FAN, Herui XIE, Xuesong MEI. Experimental study on femtosecond laser processing non-taper microholes in nickel-based alloys (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(11): 20240430 Copy Citation Text show less
    Femtosecond laser CNC machining system
    Fig. 1. Femtosecond laser CNC machining system
    Schematic diagram of laser processing hole pattern under different angles of the A-axis deflection of the machine tool. (a) Positive taper; (b) No taper; (c) Negative taper
    Fig. 2. Schematic diagram of laser processing hole pattern under different angles of the A-axis deflection of the machine tool. (a) Positive taper; (b) No taper; (c) Negative taper
    Microhole machining results with different defocus amounts. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Fig. 3. Microhole machining results with different defocus amounts. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Microhole machining results at different repetition frequency. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Fig. 4. Microhole machining results at different repetition frequency. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Microhole machining results at different scanning radius. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Fig. 5. Microhole machining results at different scanning radius. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Microhole machining results at different amount of X-axis movement. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    Fig. 6. Microhole machining results at different amount of X-axis movement. (a) Entrance; (b) Exit; (c) Diameter; (d) Taper
    The picture of blow-assisted processing. (a) Schematic diagram; (b) Physical image
    Fig. 7. The picture of blow-assisted processing. (a) Schematic diagram; (b) Physical image
    6 mm through-hole machining results. (a) Entrance; (b) Exit; (c) CT image of pore topography
    Fig. 8. 6 mm through-hole machining results. (a) Entrance; (b) Exit; (c) CT image of pore topography
    ElementContent
    Ni52.49%
    Cr19.31%
    Fe18.84%
    Nb4.95%
    Mo2.95%
    Table 1. Inconel718 main chemical composition
    Working characteristicsValue
    Wavelength/nm1030
    Pulse width/fs290
    Average power/W0-20
    Pulse energy/μJ0-200
    Repetition frequency/kHz0-100
    Polarization stateLinear polarization
    Table 2. Infrared femtosecond laser parameters
    Serial numberDefocusing amount/mmProcessing time/min
    1−24
    2−46
    3−68
    Table 3. Single-hole machining scheme for 6 mm thick materials
    Machining parametersValue
    Pulse energy/μJ200
    Repetition frequency/kHz100
    Scanning speed/mm·s−1100
    Scanning radius/μm200
    Fill spacing/μm200
    The yaw angle of the A-axis/(°)6
    Workpiece rotation speed/r·min−130
    Table 4. Single-hole machining parameters for 6 mm thick materials
    Shuyuan ZHANG, Xijie ZHOU, Jianlei CUI, Runze FAN, Herui XIE, Xuesong MEI. Experimental study on femtosecond laser processing non-taper microholes in nickel-based alloys (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(11): 20240430
    Download Citation