• Photonics Research
  • Vol. 7, Issue 2, 116 (2019)
Bo Fu1、2, Jin Li3、4, Zhang Cao1、2, and Daniel Popa3、*
Author Affiliations
  • 1Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China
  • 2School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 3Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
  • 4e-mail: jl918@cam.ac.uk
  • show less
    DOI: 10.1364/PRJ.7.000116 Cite this Article Set citation alerts
    Bo Fu, Jin Li, Zhang Cao, Daniel Popa. Bound states of solitons in a harmonic graphene-mode-locked fiber laser[J]. Photonics Research, 2019, 7(2): 116 Copy Citation Text show less
    References

    [1] M. E. Fermann, I. Hartl. Ultrafast fibre lasers. Nat. Photonics, 7, 868-874(2013).

    [2] I. N. Duling. Subpicosecond all-fibre erbium laser. Electron. Lett., 27, 544-545(1991).

    [3] J. Bewersdorf, S. W. Hell. Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz. J. Microsc., 191, 28-38(1998).

    [4] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).

    [5] H. A. Haus, W. S. Wong. Solitons in optical communications. Rev. Mod. Phys., 68, 423-444(1996).

    [6] G. P. Agrawal. Applications of Nonlinear Fiber Optics, 1-508(2008).

    [7] A. B. Grudinin, D. J. Richardson, D. N. Payne. Passive harmonic modelocking of a fibre soliton ring laser. Electron. Lett., 29, 1860-1861(1993).

    [8] L. Nelson, D. Jones, K. Tamura, H. Haus, E. Ippen. Ultrashort-pulse fiber ring lasers. Appl. Phys. B, 65, 277-294(1997).

    [9] B. A. Malomed. Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation. Phys. Rev. A, 44, 6954-6957(1991).

    [10] A. Komarov, K. Komarov, F. Sanchez. Harmonic passive mode locking of bound-soliton structures in fiber lasers. Opt. Commun., 354, 158-162(2015).

    [11] D. Y. Tang, W. S. Man, H. Y. Tam, P. D. Drummond. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A, 64, 033814(2001).

    [12] P. Grelu, F. Belhache, F. Gutty, J. M. Soto-Crespo. Phase-locked soliton pairs in a stretched-pulse fiber laser. Opt. Lett., 27, 966-968(2002).

    [13] G. Herink, F. Kurtz, B. Jalali, D. R. Solli, C. Ropers. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-54(2017).

    [14] H. Qin, X. Xiao, P. Wang, C. Yang. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett., 43, 1982-1985(2018).

    [15] P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, C. Yang. Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution. Opt. Lett., 41, 2254-2257(2016).

    [16] N. H. Seong, D. Y. Kim. Experimental observation of stable bound solitons in a figure-eight fiber laser. Opt. Lett., 27, 1321-1323(2002).

    [17] B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, A. Tünnermann. Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser. Opt. Lett., 35, 1578-1580(2010).

    [18] X. Liu, X. Yao, Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett., 121, 023905(2018).

    [19] L. Gui, X. Li, X. Xiao, H. Zhu, C. Yang. Widely spaced bound states in a soliton fiber laser with graphene saturable absorber. IEEE Photon. Technol. Lett., 25, 1184-1187(2013).

    [20] P. Wang, K. Zhao, L. Gui, X. Xiao, C. Yang. Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber. IEEE Photon. Technol. Lett., 30, 1210-1213(2018).

    [21] X. Li, K. Xia, D. Wu, Q. Nie, S. Dai. Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber. IEEE Photon. Technol. Lett., 29, 2071-2074(2017).

    [22] Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, J. Zhao. Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber. Opt. Express, 23, 205-210(2015).

    [23] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [24] Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, F. O. Ilday. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser. Appl. Phys. Lett., 107, 241107(2015).

    [25] R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, J. R. Taylor. Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser. IEEE Photon. Technol. Lett., 26, 1672-1675(2014).

    [26] R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, A. K. Kar. Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking. Appl. Phys. Lett., 103, 221117(2013).

    [27] K. Kieu, F. W. Wise. All-fiber normal-dispersion femtosecond laser. Opt. Express, 16, 11453-11458(2008).

    [28] C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, D.-I. Yeom. Toward higher-order passive harmonic mode-locking of a soliton fiber laser. Opt. Lett., 37, 1862-1864(2012).

    [29] L. Gui, X. Xiao, C. Yang. Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser. J. Opt. Soc. Am. B, 30, 158-164(2013).

    [30] R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, A. C. Ferrari. 500  fs wideband tunable fiber laser mode-locked by nanotubes. Phys. E, 44, 1078-1081(2012).

    [31] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [32] D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, A. C. Ferrari. Few-cycle pulses from a graphene mode-locked all-fiber laser. Appl. Phys. Lett., 106, 253101(2015).

    [33] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari. Sub 200  fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [34] G. Sobon, J. Sotor, K. M. Abramski. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz. Appl. Phys. Lett., 100, 161109(2012).

    [35] B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, C. Yang. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm. IEEE J. Sel. Top. Quantum Electron., 20, 411-415(2014).

    [36] I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, F. Rotermund. Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber. Appl. Phys. Express, 5, 032701(2012).

    [37] M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, A. Sennaroglu. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Opt. Lett., 38, 341-343(2013).

    [38] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8  μm. IEEE Photon. Technol. Lett., 28, 7-10(2016).

    [39] C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Opt. Express, 21, 31548-31559(2013).

    [40] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A. C. Ferrari. Production and processing of graphene and 2d crystals. Mater. Today, 15, 564-589(2012).

    [41] Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett., 35, 3709-3711(2010).

    [42] A. Martinez, K. Fuse, B. Xu, S. Yamashita. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Opt. Express, 18, 23054-23061(2010).

    [43] D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, A. C. Ferrari. A stable, power scaling, graphene-mode-locked all-fiber oscillator. Appl. Phys. Lett., 110, 243102(2017).

    [44] F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, A. C. Ferrari. Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers. Adv. Opt. Mater., 4, 1088-1097(2016).

    [45] D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, A. C. Ferrari. Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser. Conference on Lasers and Electro-Optics, JTu5A.2(2017).

    [46] L. Gui, C. Yang. Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode-locked erbium-doped fiber laser. IEEE Photon. J., 10, 1502609(2018).

    [47] T. Wu, K. Chen, H. Zhao, W. Zhang, Y. Li, H. Wei. Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy. Opt. Express, 26, 22001-22010(2018).

    [48] W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339(1958).

    [49] V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, A. K. Geim. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B, 81, 155413(2010).

    [50] K. Kashiwagi, S. Yamashita, S. Y. Set. In-situ monitoring of optical deposition of carbon nanotubes onto fiber end. Opt. Express, 17, 5711-5715(2009).

    [51] J. W. Nicholson, R. S. Windeler, D. J. DiGiovanni. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express, 15, 9176-9183(2007).

    [52] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 187401(2006).

    [53] H. A. Haus. Theory of mode locking with a fast saturable absorber. J. Appl. Phys., 46, 3049-3058(1975).

    [54] A. Cabasse, G. Martel, J. Oudar. High power dissipative soliton in an erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror. Opt. Express, 17, 9537-9542(2009).

    [55] W. Koechner. Solid-State Laser Engineering(2006).

    [56] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 28, 806-807(1992).

    [57] D. von der Linde. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B, 39, 201-217(1986).

    [58] R. Iegorov, T. Teamir, G. Makey, F. O. Ilday. Direct control of mode-locking states of a fiber laser. Optica, 3, 1312-1315(2016).

    [59] A. B. Grudinin, S. Gray. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc. Am. B, 14, 144-154(1997).

    Bo Fu, Jin Li, Zhang Cao, Daniel Popa. Bound states of solitons in a harmonic graphene-mode-locked fiber laser[J]. Photonics Research, 2019, 7(2): 116
    Download Citation