• Photonics Research
  • Vol. 7, Issue 2, 116 (2019)
Bo Fu1、2, Jin Li3、4, Zhang Cao1、2, and Daniel Popa3、*
Author Affiliations
  • 1Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China
  • 2School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 3Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
  • 4e-mail: jl918@cam.ac.uk
  • show less
    DOI: 10.1364/PRJ.7.000116 Cite this Article Set citation alerts
    Bo Fu, Jin Li, Zhang Cao, Daniel Popa. Bound states of solitons in a harmonic graphene-mode-locked fiber laser[J]. Photonics Research, 2019, 7(2): 116 Copy Citation Text show less
    (a) Linear absorption of the graphene solution (alcohol contribution subtracted); (b) GSA film optically deposited on fiber tip; (c) Raman spectrum of GSA film on fiber tip; (d) nonlinear transmittance at the laser operating wavelength.
    Fig. 1. (a) Linear absorption of the graphene solution (alcohol contribution subtracted); (b) GSA film optically deposited on fiber tip; (c) Raman spectrum of GSA film on fiber tip; (d) nonlinear transmittance at the laser operating wavelength.
    All-fiber laser schematic. LD, laser diode; WDM, wavelength-division multiplexer; EDF, Er-doped fiber; PI-ISO, polarization-insensitive isolator; PC, polarization controller; GSA, graphene saturable absorber; OC, optical coupler.
    Fig. 2. All-fiber laser schematic. LD, laser diode; WDM, wavelength-division multiplexer; EDF, Er-doped fiber; PI-ISO, polarization-insensitive isolator; PC, polarization controller; GSA, graphene saturable absorber; OC, optical coupler.
    Fundamental mode-locking experimental results. (a) Optical spectrum; (b) temporal waveform; (c) pulse profile; (d) RF spectrum with 10 Hz resolution (inset, 1000 MHz span).
    Fig. 3. Fundamental mode-locking experimental results. (a) Optical spectrum; (b) temporal waveform; (c) pulse profile; (d) RF spectrum with 10 Hz resolution (inset, 1000 MHz span).
    BS experimental results. (a), (b), and (c) BS spectral modulations as functions of intracavity polarization, with a stable CW-free spectrum shown in (c) (inset, spectral magnification around the central wavelength, 1558 nm); (d) autocorrelation trace of the pulses (inset, pulse profile). The pulse separation Δτ modulates the spectrum with a period of 1/Δτ. (e) Temporal waveform of the intracavity circulating pulses; (f) RF spectrum with 10 Hz resolution (inset, 500 MHz span).
    Fig. 4. BS experimental results. (a), (b), and (c) BS spectral modulations as functions of intracavity polarization, with a stable CW-free spectrum shown in (c) (inset, spectral magnification around the central wavelength, 1558 nm); (d) autocorrelation trace of the pulses (inset, pulse profile). The pulse separation Δτ modulates the spectrum with a period of 1/Δτ. (e) Temporal waveform of the intracavity circulating pulses; (f) RF spectrum with 10 Hz resolution (inset, 500 MHz span).
    HML experimental results. (a) Optical spectrum (inset, pulse profile); (b) temporal waveform; (c) RF spectrum with 20 kHz resolution (inset, 1500 MHz span); (d) output power and harmonic order as functions of pump power.
    Fig. 5. HML experimental results. (a) Optical spectrum (inset, pulse profile); (b) temporal waveform; (c) RF spectrum with 20 kHz resolution (inset, 1500 MHz span); (d) output power and harmonic order as functions of pump power.
    Bo Fu, Jin Li, Zhang Cao, Daniel Popa. Bound states of solitons in a harmonic graphene-mode-locked fiber laser[J]. Photonics Research, 2019, 7(2): 116
    Download Citation