• Photonics Research
  • Vol. 10, Issue 6, A82 (2022)
Chao Xiang, Warren Jin, and John E. Bowers*
Author Affiliations
  • Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
  • show less
    DOI: 10.1364/PRJ.452936 Cite this Article Set citation alerts
    Chao Xiang, Warren Jin, John E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects[J]. Photonics Research, 2022, 10(6): A82 Copy Citation Text show less
    References

    [1] J. Robertson. Electronic structure of silicon nitride. Philos. Mag. B, 63, 47-77(1991).

    [2] D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Silicon nitride in silicon photonics. Proc. IEEE, 106, 2209-2231(2018).

    [3] P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, C. Domínguez. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors, 17, 2088(2017).

    [4] A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, R. Baets. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol., 35, 639-649(2017).

    [5] S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, J. Witzens. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Opt. Express, 21, 14036-14046(2013).

    [6] J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express, 19, 24090-24101(2011).

    [7] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [8] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [9] R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi. Silicon photonics: silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference, Th3J-1(2016).

    [10] Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. van der Slot, K.-J. Boller. A hybrid semiconductor-glass waveguide laser. Proc. SPIE, 9135, 91351B(2014).

    [11] K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, R. G. Heideman. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics, 7, 4(2020).

    [12] C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, J. E. Bowers. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20-21(2020).

    [13] C. Xiang, W. Jin, D. Huang, M. A. Tran, J. Guo, Y. Wan, W. Xie, G. Kurczveil, A. M. Netherton, D. Liang, H. Rong, J. E. Bowers. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2022).

    [14] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [15] A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky, T. J. Kippenberg. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [16] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, J. E. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [17] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [18] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [19] B. Li, W. Jin, L. Wu, L. Chang, H. Wang, B. Shen, Z. Yuan, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Reaching fiber-laser coherence in integrated photonics. Opt. Lett., 46, 5201-5204(2021).

    [20] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, M. T. Hummon. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [21] H. C. Lefevre. The Fiber-Optic Gyroscope, 2nd ed.(2014).

    [22] X. Bao, L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11, 4152-4187(2011).

    [23] A. Rahim, T. Spuesens, R. Baets, W. Bogaerts. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).

    [24] A. Rahim, J. Goyvaerts, B. Szelag, J.-M. Fedeli, P. Absil, T. Aalto, M. Harjanne, C. Littlejohns, G. Reed, G. Winzer, S. Lischke, L. Zimmermann, D. Knoll, D. Geuzebroek, A. Leinse, M. Geiselmann, M. Zervas, H. Jans, A. Stassen, C. Domínguez, P. Muñoz, D. Domenech, A. L. Giesecke, M. C. Lemme, R. Baets. Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron., 25, 8200818(2019).

    [25] R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanatechnol. Mag., 13, 17-26(2019).

    [26] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, J. E. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [27] W. Stutius, W. Streifer. Silicon nitride films on silicon for optical waveguides. Appl. Opt., 16, 3218-3222(1977).

    [28] R. G. Heideman, R. P. H. Kooyman, J. Greve. Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. Sens. Actuators B Chem., 10, 209-217(1993).

    [29] F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, A. Borreman. Box-shaped dielectric waveguides: a new concept in integrated optics?. J. Lightwave Technol., 25, 2579-2589(2007).

    [30] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37-40(2010).

    [31] J. F. Bauters, M. L. Davenport, M. J. Heck, J. K. Doylend, A. Chen, A. W. Fang, J. E. Bowers. Silicon on ultra-low-loss waveguide photonic integration platform. Opt. Express, 21, 544-555(2013).

    [32] D. T. Spencer, J. F. Bauters, M. J. R. Heck, J. E. Bowers. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 1, 153-157(2014).

    [33] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, T. J. Kippenberg. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [34] M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 3, 20-25(2016).

    [35] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [36] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [37] H. El Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, C. Sciancalepore. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Opt. Express, 27, 30726-30740(2019).

    [38] M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, D. J. Blumenthal. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [39] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [40] X. Ji, S. Roberts, M. Corato-Zanarella, M. Lipson. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photon., 6, 071101(2021).

    [41] R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, A. Meijerink. Large-scale integrated optics using TriPleX waveguide technology: from UV to IR. Proc. SPIE, 7221, 72210R(2009).

    [42] C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, K.-J. Boller. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron., 24, 4400321(2018).

    [43] J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express, 19, 3163-3174(2011).

    [44] K. Liu, N. Jin, H. Cheng, N. Chauhan, M. W. Puckett, K. D. Nelson, R. O. Behunin, P. T. Rakich, D. J. Blumenthal. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett., 47, 1855-1858(2022).

    [45] Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, A. Adibi. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform. Opt. Express, 21, 18236-18248(2013).

    [46] K. H. Nam, I. H. Park, S. H. Ko. Patterning by controlled cracking. Nature, 485, 221-224(2012).

    [47] K. Luke, A. Dutt, C. B. Poitras, M. Lipson. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express, 21, 22829-22833(2013).

    [48] Z. Ye, K. Twayana, P. A. Andrekson, V. Torres-Company. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 27, 35719-35727(2019).

    [49] M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [50] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [51] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [52] L. A. Coldren, S. W. Corzine, M. Mašanovic. Diode Lasers and Photonic Integrated Circuits(2012).

    [53] C. Henry. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 18, 259-264(1982).

    [54] M. A. Tran, D. Huang, J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photon., 4, 111101(2019).

    [55] B. Liu, A. Shakouri, J. E. Bowers. Wide tunable double ring resonator coupled lasers. IEEE Photon. Technol. Lett., 14, 600-602(2002).

    [56] T. Komljenovic, J. E. Bowers. Monolithically integrated high-Q rings for narrow linewidth widely tunable lasers. IEEE J. Quantum Electron., 51, 0600610(2015).

    [57] M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, J. E. Bowers. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron., 26, 1500514(2020).

    [58] C. Xiang, P. A. Morton, J. Khurgin, C. Morton, J. E. Bowers. Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters. IEEE 15th International Conference on Group IV Photonics (GFP), 1-2(2018).

    [59] C. Xiang, W. Jin, J. Guo, C. Williams, A. M. Netherton, L. Chang, P. A. Morton, J. E. Bowers. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt. Express, 28, 19926-19936(2020).

    [60] Y. Fan, A. van Rees, P. J. M. van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. Roeloffzen, K.-J. Boller. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 28, 21713-21728(2020).

    [61] B. Stern, X. Ji, A. Dutt, M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 42, 4541-4544(2017).

    [62] J. Li, B. Zhang, S. Yang, H. Chen, M. Chen. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector. Photon. Res., 9, 558-566(2021).

    [63] C. Xiang, P. A. Morton, J. E. Bowers. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt. Lett., 44, 3825-3828(2019).

    [64] S. Tao, Q. Huang, L. Zhu, J. Liu, Y. Zhang, Y. Huang, Y. Wang, J. Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature. Photon. Res., 6, 686-691(2018).

    [65] W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, L. Maleki. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett., 35, 2822-2824(2010).

    [66] W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371(2015).

    [67] N. G. Pavlov, S. Koptyaev, G. V. Lihachev, A. S. Voloshin, A. S. Gorodnitskiy, M. V. Ryabko, S. V. Polonsky, M. L. Gorodetsky. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

    [68] G. Lihachev, J. Riemensberger, W. Weng, J. Liu, H. Tian, A. Siddharth, V. Snigirev, R. N. Wang, J. He, S. A. Bhave, T. J. Kippenberg. Ultralow-noise frequency-agile photonic integrated lasers(2021).

    [69] C. Xiang, J. Guo, W. Jin, L. Wu, J. Peters, W. Xie, L. Chang, B. Shen, H. Wang, Q.-F. Yang, D. Kinghorn, M. Paniccia, K. J. Vahala, P. A. Morton, J. E. Bowers. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021).

    [70] C. O. de Beeck, B. Haq, L. Elsinger, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, B. Kuyken. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386-393(2020).

    [71] S. Cuyvers, B. Haq, C. Op de Beeck, S. Poelman, A. Hermans, Z. Wang, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, K. Van Gasse, B. Kuyken. Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser. Laser Photon. Rev., 15, 2000485(2021).

    [72] H. Park, C. Zhang, M. A. Tran, T. Komljenovic. Heterogeneous silicon nitride photonics. Optica, 7, 336-337(2020).

    [73] J. Goyvaerts, A. Grabowski, J. Gustavsson, S. Kumari, A. Stassen, R. Baets, A. Larsson, G. Roelkens. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica, 8, 1573-1580(2021).

    [74] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [75] W. Jin, R. G. Polcawich, P. A. Morton, J. E. Bowers. Piezoelectrically tuned silicon nitride ring resonator. Opt. Express, 26, 3174-3187(2018).

    [76] K. Alexander, J. P. George, J. Verbist, K. Neyts, B. Kuyken, D. Van Thourhout, J. Beeckman. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun., 9, 3444(2018).

    [77] N. Boynton, H. Cai, M. Gehl, S. Arterburn, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, T. Friedmann, C. T. DeRose, A. Lentine. A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express, 28, 1868-1884(2020).

    [78] W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G.-Q. Lo, J. K. S. Poon. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE, 106, 2232-2245(2018).

    [79] Q. Wilmart, H. El Dirani, N. Tyler, D. Fowler, S. Malhouitre, S. Garcia, M. Casale, S. Kerdiles, K. Hassan, C. Monat, X. Letartre, A. Kamel, M. Pu, K. Yvind, L. K. Oxenløwe, W. Rabaud, C. Sciancalepore, B. Szelag, S. Olivier. A versatile silicon-silicon nitride photonics platform for enhanced functionalities and applications. Appl. Sci., 9, 255(2019).

    [80] M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. E. Bowers. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J. Lightwave Technol., 32, 817-823(2013).

    [81] Q. Yu, J. Gao, N. Ye, B. Chen, K. Sun, L. Xie, K. Srinivasan, M. Zervas, G. Navickaite, M. Geiselmann, A. Beling. Heterogeneous photodiodes on silicon nitride waveguides. Opt. Express, 28, 14824-14830(2020).

    [82] S. Cuyvers, A. Hermans, M. Kiewiet, J. Goyvaerts, G. Roelkens, K. Van Gasse, D. Van Thourhout, B. Kuyken. Heterogeneous integration of Si photodiodes on silicon nitride for near-visible light detection. Opt. Lett., 47, 937-940(2022).

    [83] Y. Lin, Z. Yong, X. Luo, S. S. Azadeh, H. Chen, P. G.-Q. Lo, W. D. Sacher, J. K. S. Poon. Broadband high-efficiency SiN-on-Si waveguide photodetectors in a visible-spectrum integrated photonic platform(2022).

    [84] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [85] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [86] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [87] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [88] A. B. Matsko, A. A. Savchenkov, L. Maleki. Normal group-velocity dispersion Kerr frequency comb. Opt. Lett., 37, 43-45(2012).

    [89] Ó. B. Helgason, F. R. Arteaga-Sierra, Z. Ye, K. Twayana, P. A. Andrekson, M. Karlsson, J. Schröder, V. Torres-Company. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305-310(2021).

    [90] Ó. B. Helgason, M. Girardi, Z. Ye, F. Lei, J. Schröder, V. T. Company. Power-efficient soliton microcombs(2022).

    [91] J. M. C. Boggio, D. Bodenmüller, S. Ahmed, S. Wabnitz, D. Modotto, T. Hansson. Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling. Nat. Commun., 13, 1292(2022).

    [92] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 40, 5117-5120(2015).

    [93] H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, R. Baets. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 40, 2177-2180(2015).

    [94] M. H. Anderson, R. Bouchand, J. Liu, W. Weng, E. Obrzud, T. Herr, T. J. Kippenberg. Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica, 8, 771-779(2021).

    [95] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, D. J. Blumenthal. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 13, 60-67(2019).

    [96] F. Gyger, J. Liu, F. Yang, J. He, A. S. Raja, R. N. Wang, S. A. Bhave, T. J. Kippenberg, L. Thévenaz. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett., 124, 013902(2020).

    [97] X. Lu, G. Moille, A. Rao, D. A. Westly, K. Srinivasan. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics, 15, 131-136(2021).

    [98] E. Nitiss, J. Hu, A. Stroganov, C.-S. Brès. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics, 16, 134-141(2022).

    [99] Z. Ye, P. Zhao, K. Twayana, M. Karlsson, V. Torres-Company, P. A. Andrekson. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv., 7, eabi8150(2021).

    [100] J. Riemensberger, J. Liu, N. Kuznetsov, J. He, R. N. Wang, T. J. Kippenberg. Photonic chip-based continuous-travelling-wave parametric amplifier(2021).

    [101] M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, T. J. Kippenberg. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017).

    [102] X. Lu, G. Moille, A. Rao, D. A. Westly, K. Srinivasan. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. Optica, 7, 1417-1425(2020).

    [103] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Brès, T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).

    [104] A. S. Kowligy, D. D. Hickstein, A. Lind, D. R. Carlson, H. Timmers, N. Nader, D. L. Maser, D. Westly, K. Srinivasan, S. B. Papp, S. A. Diddams. Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides. Opt. Lett., 43, 4220-4223(2018).

    [105] D. Dai, J. Bauters, J. E. Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl., 1, e1(2012).

    [106] D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, J. E. Bowers. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express, 19, 14130-14136(2011).

    [107] T. J. Morin, L. Chang, W. Jin, C. Li, J. Guo, H. Park, M. A. Tran, T. Komljenovic, J. E. Bowers. CMOS-foundry-based blue and violet photonics. Optica, 8, 755-756(2021).

    [108] N. Chauhan, A. Isichenko, K. Liu, J. Wang, Q. Zhao, R. O. Behunin, P. T. Rakich, A. M. Jayich, C. Fertig, C. W. Hoyt, D. J. Blumenthal. Visible light photonic integrated Brillouin laser. Nat. Commun., 12, 4685(2021).

    [109] W. D. Sacher, X. Luo, Y. Yang, F.-D. Chen, T. Lordello, J. C. C. Mak, X. Liu, T. Hu, T. Xue, P. G.-Q. Lo, M. L. Roukes, J. K. S. Poon. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Opt. Express, 27, 37400-37418(2019).

    [110] A. T. Mashayekh, T. Klos, D. Geuzebroek, E. Klein, T. Veenstra, M. Büscher, F. Merget, P. Leisching, J. Witzens. Silicon nitride PIC-based multi-color laser engines for life science applications. Opt. Express, 29, 8635-8653(2021).

    [111] https://www.lionix-international.com/photonics/applications/photonic-biosensor/. https://www.lionix-international.com/photonics/applications/photonic-biosensor/

    [112] P. Muñoz, P. W. L. van Dijk, D. Geuzebroek, M. Geiselmann, C. Domínguez, A. Stassen, J. D. Doménech, M. Zervas, A. Leinse, C. G. H. Roeloffzen, B. Gargallo, R. Baños, J. Fernández, G. M. Cabanes, L. A. Bru, D. Pastor. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron., 25, 8200513(2019).

    [113] J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [114] I. Visscher, C. Roeloffzen, C. Taddei, M. Hoekman, L. Wevers, R. Grootjans, P. Kapteijn, D. Geskus, A. Alippi, R. Dekker, R. Oldenbeuving, J. Epping, R. B. Timens, E. Klein, A. Leinse, P. V. Dijk, R. Heideman. Broadband true time delay microwave photonic beamformer for phased array antennas. 13th European Conference on Antennas and Propagation (EuCAP), 1-5(2019).

    [115] C. Taballione, R. van der Meer, H. J. Snijders, P. Hooijschuur, J. P. Epping, M. de Goede, B. Kassenberg, P. Venderbosch, C. Toebes, H. van den Vlekkert, P. W. H. Pinkse, J. J. Renema. A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol., 1, 035002(2021).

    [116] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [117] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, A. J. Lowery. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2, 854-859(2015).

    [118] L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express, 19, 23162-23170(2011).

    [119] C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, K.-J. Boller. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [120] R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, D. J. Blumenthal. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications. IEEE Photon. Technol. Lett., 25, 1165-1168(2013).

    [121] C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, J. E. Bowers. Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J. Sel. Top. Quantum Electron., 24, 5900109(2018).

    [122] T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, D. J. Blumenthal. Integrated resonators in an ultralow loss Si3N4/SiO2 platform for multifunction applications. IEEE J. Sel. Top. Quantum Electron., 24, 5900209(2018).

    [123] Z. Du, C. Xiang, T. Fu, M. Chen, S. Yang, J. E. Bowers, H. Chen. Silicon nitride chirped spiral Bragg grating with large group delay. APL Photon., 5, 101302(2020).

    [124] E. J. Stanton, M. J. R. Heck, J. Bovington, A. Spott, J. E. Bowers. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. Opt. Express, 23, 11272-11283(2015).

    [125] A. Rao, G. Moille, X. Lu, D. A. Westly, D. Sacchetto, M. Geiselmann, M. Zervas, S. B. Papp, J. Bowers, K. Srinivasan. Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs. Light Sci. Appl., 10, 109(2021).

    [126] L. Zhang, Y. Li, Y. Hou, Y. Wang, M. Tao, B. Chen, Q. Na, Y. Li, Z. Zhi, X. Liu, X. Li, F. Gao, X. Luo, G.-Q. Lo, J. Song. Investigation and demonstration of a high-power handling and large-range steering optical phased array chip. Opt. Express, 29, 29755-29765(2021).

    [127] Q. Wang, S. Wang, L. Jia, Y. Cai, W. Yue, M. Yu. Silicon nitride assisted 1×64 optical phased array based on a SOI platform. Opt. Express, 29, 10509-10517(2021).

    [128] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, M. R. Watts. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett., 42, 21-24(2017).

    [129] Y. Li, B. Chen, Q. Na, Q. Xie, M. Tao, L. Zhang, Z. Zhi, Y. Li, X. Liu, X. Luo, G. Lo, F. Gao, X. Li, J. Song. Wide-steering-angle high-resolution optical phased array. Photon. Res., 9, 2511-2518(2021).

    [130] M. C. Shin, A. Mohanty, K. Watson, G. R. Bhatt, C. T. Phare, S. A. Miller, M. Zadka, B. S. Lee, X. Ji, I. Datta, M. Lipson. Chip-scale blue light phased array. Opt. Lett., 45, 1934-1937(2020).

    [131] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [132] P. A. Morton, M. J. Morton. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Lightwave Technol., 36, 5048-5057(2018).

    [133] N. Volet, X. Yi, Q.-F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, J. E. Bowers. Micro-resonator soliton generated directly with a diode laser. Laser Photon. Rev., 12, 1700307(2018).

    [134] A. S. Raja, J. Liu, N. Volet, R. N. Wang, J. He, E. Lucas, R. Bouchandand, P. Morton, J. Bowers, T. J. Kippenberg. Chip-based soliton microcomb module using a hybrid semiconductor laser. Opt. Express, 28, 2714-2721(2020).

    [135] N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov, A. S. Voloshin, N. G. Pavlov, S. Koptyaev, M. L. Gorodetsky. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

    [136] A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev, J. Liu, V. E. Lobanov, N. Y. Dmitriev, W. Weng, T. J. Kippenberg, I. A. Bilenko. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 12, 235(2021).

    [137] T. C. Briles, S.-P. Yu, L. Chang, C. Xiang, J. Guo, D. Kinghorn, G. Moille, K. Srinivasan, J. E. Bowers, S. B. Papp. Hybrid InP and SiN integration of an octave-spanning frequency comb. APL Photon., 6, 026102(2021).

    [138] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [139] M. Gao, Q.-F. Yang, Q.-X. Ji, H. Wang, L. Wu, B. Shen, J. Liu, G. Huang, L. Chang, W. Xie, S.-P. Yu, S. B. Papp, J. E. Bowers, T. J. Kippenberg, K. J. Vahala. Probing material absorption and optical nonlinearity of integrated photonic materials(2021).

    [140] J. Chiles, N. Nader, D. D. Hickstein, S. P. Yu, T. C. Briles, D. Carlson, H. Jung, J. M. Shainline, S. Diddams, S. B. Papp, S. W. Nam, R. P. Mirin. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett., 43, 1527-1530(2018).

    [141] W. Jin, D. D. John, J. F. Bauters, T. Bosch, B. J. Thibeault, J. E. Bowers. Deuterated silicon dioxide for heterogeneous integration of ultra-low-loss waveguides. Opt. Lett., 45, 3340-3343(2020).

    [142] W. Jin, A. Feshali, M. Paniccia, J. E. Bowers. Seamless multi-reticle photonics. Opt. Lett., 46, 2984-2987(2021).

    [143] C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, D. Geskus, C. G. H. Roeloffzen, J. J. Renema, I. A. Walmsley, P. W. H. Pinkse, K.-J. Boller. 8x8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express, 27, 26842-26857(2019).

    [144] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [145] D. Pérez-López, A. Gutiérrez, J. Capmany. Silicon nitride programmable photonic processor with folded heaters. Opt. Express, 29, 9043-9059(2021).

    [146] W. Bogaerts, D. Pérez, J. Capmany, D. A. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [147] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [148] J. Liu, H. Tian, E. Lucas, A. S. Raja, G. Lihachev, R. N. Wang, J. He, T. Liu, M. H. Anderson, W. Weng, S. A. Bhave, T. J. Kippenberg. Monolithic piezoelectric control of soliton microcombs. Nature, 583, 385-390(2020).

    [149] M. Dong, G. Clark, A. J. Leenheer, M. Zimmermann, D. Dominguez, A. J. Menssen, D. Heim, G. Gilbert, D. Englund, M. Eichenfield. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photonics, 16, 59-65(2022).

    [150] N. Kobayashi, K. Sato, M. Namiwaka, K. Yamamoto, S. Watanabe, T. Kita, H. Yamada, H. Yamazaki. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Lightwave Technol., 33, 1241-1246(2015).

    [151] N. Pavarelli, J. S. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, P. A. O’Brien. Optical and electronic packaging processes for silicon photonic systems. J. Lightwave Technol., 33, 991-997(2015).

    [152] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [153] C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, J. E. Bowers. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica, 8, 749-754(2021).

    [154] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron., 24, 6000412(2018).

    [155] C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, J. E. Bowers. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photon., 8, 2555-2566(2021).

    [156] D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, C. Koos. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl., 10, 64(2021).

    [157] A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, R. Baets. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited]. Photon. Res., 3, B47-B59(2015).

    [158] L. Tang, H. Jia, S. Shao, S. Yang, H. Chen, M. Chen. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity. Photon. Res., 9, 1948-1957(2021).

    [159] M. Corato-Zanarella, A. Gil-Molina, X. Ji, M. C. Shin, A. Mohanty, M. Lipson. Widely tunable and narrow linewidth chip-scale lasers from deep visible to near-IR(2021).

    [160] D. J. Blumenthal. Photonic integration for UV to IR applications. APL Photon., 5, 020903(2020).

    [161] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, G.-Q. Lo. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    Chao Xiang, Warren Jin, John E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects[J]. Photonics Research, 2022, 10(6): A82
    Download Citation