• Photonics Research
  • Vol. 8, Issue 2, 194 (2020)
Jérôme Michon1、*, Sarah Geiger1、2, Lan Li3、4, Claudia Goncalves5, Hongtao Lin6, Kathleen Richardson5, Xinqiao Jia2、7, and Juejun Hu1、8
Author Affiliations
  • 1Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 2Department of Biological Engineering, University of Delaware, Newark, Delaware 19716, USA
  • 3Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
  • 4Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
  • 5College of Optics & Photonics, University of Central Florida, Orlando, Florida 32816, USA
  • 6College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • 7e-mail: xjia@udel.edu
  • 8e-mail: hujuejun@mit.edu
  • show less
    DOI: 10.1364/PRJ.375584 Cite this Article Set citation alerts
    Jérôme Michon, Sarah Geiger, Lan Li, Claudia Goncalves, Hongtao Lin, Kathleen Richardson, Xinqiao Jia, Juejun Hu. 3D integrated photonics platform with deterministic geometry control[J]. Photonics Research, 2020, 8(2): 194 Copy Citation Text show less
    References

    [1] J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, D. H. Gracias. Nanoscale origami for 3D optics. Small, 7, 1943-1948(2011).

    [2] R. J. Wood. The challenge of manufacturing between macro and micro. Am. Sci., 102, 124-131(2014).

    [3] D. Bishop, F. Pardo, C. Bolle, R. Giles, V. Aksyuk. Silicon micro-machines for fun and profit. J. Low Temp. Phys., 169, 386-399(2012).

    [4] T. G. Leong, C. L. Randall, B. R. Benson, N. Bassik, G. M. Stern, D. H. Gracias. Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. USA, 106, 703-708(2009).

    [5] K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, P. V. Braun. Multidimensional architectures for functional optical devices. Adv. Mater., 22, 1084-1101(2010).

    [6] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener. Three-dimensional invisibility cloak at optical wavelengths. Science, 328, 337-339(2010).

    [7] K. Suzuki, K. Kitano, K. Ishizaki, S. Noda. Three-dimensional photonic crystals created by single-step multi-directional plasma etching. Opt. Express, 22, 17099-17106(2014).

    [8] L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, J. Hu. Monolithically integrated stretchable photonics. Light Sci. Appl., 7, 17138(2018).

    [9] J. Missinne, N. T. Benéitez, A. Lamberti, G. Chiesura, G. Luyckx, M. A. Mattelin, W. Van Paepegem, G. Van Steenberge. Thin and flexible polymer photonic sensor foils for monitoring composite structures. Adv. Eng. Mater., 20, 1701127(2018).

    [10] W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, A. Javey. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529, 509-514(2016).

    [11] Z. Bao, X. Chen. Flexible and stretchable devices. Adv. Mater., 28, 4177-4179(2016).

    [12] N. Lu, C. Lu, S. Yang, J. Rogers. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater., 22, 4044-4050(2012).

    [13] T. Gissibl, S. Thiele, A. Herkommer, H. Giessen. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [14] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, J. A. Lewis. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater., 26, 6307-6312(2014).

    [15] S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H. U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R. G. Nuzzo, Y. Huang, Y. Zhang, J. A. Rogers. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347, 154-159(2015).

    [16] Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J. H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, J. A. Rogers. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv. Funct. Mater., 26, 2629-2639(2016).

    [17] D. A. Lauffenburger, A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell, 84, 359-369(1996).

    [18] R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas, J. M. García-Aznar, J. J. Muñoz, P. Roca-Cusachs, X. Trepat. Collective cell durotaxis emerges from long-range intercellular force transmission. Science, 353, 1157-1161(2016).

    [19] D. A. Lee, M. M. Knight, J. J. Campbell, D. L. Bader. Stem cell mechanobiology. J. Cell. Biochem., 112, 1-9(2011).

    [20] J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R. A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol., 3, 349-363(2002).

    [21] W. J. Polacheck, C. S. Chen. Measuring cell-generated forces: a guide to the available tools. Nat. Methods, 13, 415-423(2016).

    [22] V. W. Wong, M. T. Longaker, G. C. Gurtner. Soft tissue mechanotransduction in wound healing and fibrosis. Semin. Cell. Dev. Biol., 23, 981-986(2012).

    [23] G. Cheng, J. Tse, R. K. Jain, L. L. Munn. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE, 4, e4632(2009).

    [24] S. Timoshenko. Theory of Elastic Stability(1961).

    [25] T. Hauck, W. H. Müller, I. Schmadlak. Nonlinear buckling analysis of vertical wafer probe technology. Microsyst. Technol., 16, 1909-1920(2010).

    [26] Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J. Hu. Low-loss photonic device in Ge-Sb–S chalcogenide glass. Opt. Lett., 41, 3090-3093(2016).

    [27] H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C.-C. Huang, R.-J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, J. Hu. Chalcogenide glass-on-graphene photonics. Nat. Photonics, 11, 798-805(2017).

    [28] L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, J. Hu. High-performance flexible waveguide-integrated photodetectors. Optica, 5, 44-51(2018).

    [29] Q. Du, C. Wang, Y. Zhang, Y. Zhang, T. Fakhrul, W. Zhang, C. Gonçalves, C. Blanco, K. Richardson, L. Deng, C. A. Ross, L. Bi, J. Hu. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio. ACS Photon., 5, 5010-5016(2018).

    [30] L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 8, 643-649(2014).

    [31] L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, O. Ogbuu, Q. Du, X. Jia, J. Li, J. Hu. Foldable and cytocompatible sol-gel TiO2 photonics. Sci. Rep., 5, 13832(2015).

    [32] S. Mandal, D. Erickson. Nanoscale optofluidic sensor arrays. Opt. Express, 16, 1623-1631(2008).

    [33] S. J. Geiger, J. Michon, L. Li, J. Hu, X. Jia. Modeling 3D photonic sensor arrays for stiffness gradient detection in perfusion-limited cardiac graft tissue models.

    [34] A. Ksendzov, Y. Lin. Integrated optics ring-resonator sensors for protein detection. Opt. Lett., 30, 3344-3346(2005).

    [35] A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, B. Goldberg. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron., 12, 148-155(2006).

    [36] A. Nitkowski, L. Chen, M. Lipson. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Opt. Express, 16, 11930-11936(2008).

    [37] C.-Y. Chao, S. Ashkenazi, S.-W. Huang, M. O’Donnell, L. Guo. High-frequency ultrasound sensors using polymer microring resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 957-965(2007).

    [38] B. Bhola, P. Nosovitskiy, H. Mahalingam, W. H. Steier. Sol-gel-based integrated optical microring resonator humidity sensor. IEEE Sens. J., 9, 740-747(2009).

    [39] S. V. Plotnikov, B. Sabass, U. S. Schwarz, C. M. Waterman. High-resolution traction force microscopy. Methods in Cell Biology, 123, 367-394(2014).

    [40] C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, M. A. Schwartz. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466, 263-266(2010).

    [41] C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, G. Ravichandran. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech., 47, 427-438(2007).

    [42] J. Toyjanova, E. Bar-Kochba, C. López-Fagundo, J. Reichner, D. Hoffman-Kim, C. Franck. High resolution, large deformation 3D traction force microscopy. PLoS ONE, 9, e90976(2014).

    [43] H. Xu, S. F. Othman, R. L. Magin. Monitoring tissue engineering using magnetic resonance imaging. J. Biosci. Bioeng., 106, 515-527(2008).

    [44] A. Buljac, C. Jailin, A. Mendoza, J. Neggers, T. Taillandier-Thomas, A. Bouterf, B. Smaniotto, F. Hild, S. Roux. Digital volume correlation: review of progress and challenges. Exp. Mech., 58, 661-708(2018).

    [45] W. J. Westerveld, J. Pozo, P. J. Harmsma, R. Schmits, E. Tabak, T. C. van den Dool, S. M. Leinders, K. W. A. van Dongen, H. P. Urbach, M. Yousefi. Characterization of a photonic strain sensor in silicon-on-insulator technology. Opt. Lett., 37, 479-481(2012).

    [46] L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, M. Qi. Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing. Opt. Express, 20, 20564-20575(2012).

    [47] S. Geiger, Q. Du, B. Huang, M. Y. Shalaginov, J. Michon, H. Lin, T. Gu, A. Yadav, K. A. Richardson, X. Jia, J. Hu. Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry. Opt. Mater. Express, 9, 2252-2263(2019).

    [48] J. Hu, X. Sun, A. Agarwal, L. C. Kimerling. Design guidelines for optical resonator biochemical sensors. J. Opt. Soc. Am. B, 26, 1032-1041(2009).

    [49] K. M. Mabry, R. L. Lawrence, K. S. Anseth. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials, 49, 47-56(2015).

    [50] . SU-8 2000 processing guidelines.

    [51] H. Lorenz, M. Laudon, P. Renaud. Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron. Eng., 41-42, 371-374(1998).

    [52] S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, A. Boisen. Processing of thin SU-8 films. J. Micromech. Microeng., 18, 125020(2008).

    [53] G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, W.-G. Lee. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express, 18, 22215-22221(2010).

    [54] S. Katz, S. Givli. The post-buckling behavior of a beam constrained by springy walls. J. Mech. Phys. Solids, 78, 443-466(2015).

    [55] T. Y. Wang, C. G. Koh, C. Y. Liaw. Post-buckling analysis of planar elastica using a hybrid numerical strategy. Comput. Struct., 88, 785-795(2010).

    [56] A. Pocheau, B. Roman. Uniqueness of solutions for constrained elastica. Physica D, 192, 161-186(2004).

    [57] B. Roman, A. Pocheau. Postbuckling of bilaterally constrained rectangular thin plates. J. Mech. Phys. Solids, 50, 2379-2401(2002).

    Jérôme Michon, Sarah Geiger, Lan Li, Claudia Goncalves, Hongtao Lin, Kathleen Richardson, Xinqiao Jia, Juejun Hu. 3D integrated photonics platform with deterministic geometry control[J]. Photonics Research, 2020, 8(2): 194
    Download Citation