• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516019 (2021)
Xue Zhou1, Xin Yan1, Xuenan Zhang1, Fang Wang1, Shuguang Li1, Lei Lang2, and Tonglei Cheng1、*
Author Affiliations
  • 1State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang , Liaoning 110819, China
  • 2SIASUN Robot & Automation Co., Ltd., Shenyang , Liaoning 110819, China
  • show less
    DOI: 10.3788/LOP202158.1516019 Cite this Article Set citation alerts
    Xue Zhou, Xin Yan, Xuenan Zhang, Fang Wang, Shuguang Li, Lei Lang, Tonglei Cheng. Application of Soft-Glass Optical Fibers in Biosensing[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516019 Copy Citation Text show less
    References

    [1] Seddon A B. Chalcogenide glasses: a review of their preparation, properties and applications[J]. Journal of Non Crystalline Solids, 184, 44-50(1995).

    [2] Kim W H, Nguyen V Q, Shaw L B et al. Recent progress in chalcogenide fiber technology at NRL[J]. Journal of Non-Crystalline Solids, 431, 8-15(2016).

    [3] Sanghera J S, Brandon Shaw L, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 114-119(2009).

    [4] Madden S J, Vu K T. High-performance integrated optics with tellurite glasses: status and prospects[J]. International Journal of Applied Glass Science, 3, 289-298(2012).

    [5] Mori A. Tellurite-based fibers and their applications to optical communication networks[J]. Journal of the Ceramic Society of Japan, 116, 1040-1051(2008).

    [6] Cheng T L, Xue X J, Liu L et al. Experimental observation of mid-infrared higher-order soliton fission in a tapered tellurite microstructured optical fiber[J]. Japanese Journal of Applied Physics, 55, 060302(2016).

    [7] Zhu X S, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in OptoElectronics, 2010, 1-23(2010).

    [8] Cheng T L, Gao W Q, Xue X J et al. Fourth-order cascaded Raman shift in a birefringence ZBLAN fluoride fiber[J]. Optical Fiber Technology, 36, 245-248(2017).

    [9] Li N, Wang F, Yao C F et al. Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser[J]. Applied Physics Letters, 110, 061102(2017).

    [10] Sharmin N, Rudd C D. Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review[J]. Journal of Materials Science, 52, 8733-8760(2017).

    [11] Atsushi M. Tellurite-based fibers and their applications to optical communication networks(Glass and Ceramic Materials for Photonics)[J]. Journal of the Ceramic Society of Japan, 116, 1040-1051(2008).

    [12] Lopez-Iscoa P, Ojha N, Pugliese D et al. Design, processing, and characterization of an optical core-bioactive clad phosphate fiber for biomedical applications[J]. Journal of the American Ceramic Society, 102, 6882-6892(2019).

    [13] Khan R A, Parsons A J, Jones I A et al. Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials[J]. Journal of Macromolecular Science: Part D-Reviews in Polymer Processing, 49, 1265-1274(2010).

    [14] Haouari M, Maaoui A, Saad N et al. Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass[J]. Sensors and Actuators A: Physical, 261, 235-242(2017).

    [15] Gao W Q, Li X, Wang P et al. Investigation on sensing characteristics of fiber Bragg gratings based on soft glass fibers[J]. Optik, 156, 13-21(2018).

    [16] Cheng T L, Tanaka S, Tuan T H et al. All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber[J]. Optics Letters, 42, 2354-2357(2017).

    [17] Yin S Y, Lousteau J, Olivero M et al. Analysis of Faraday effect in multimode tellurite glass optical fiber for magneto-optical sensing and monitoring applications[J]. Applied Optics, 51, 4542-4546(2012).

    [18] Sharma A K, Gupta J, Basu R. Simulation and performance evaluation of fiber optic sensor for detection of hepatic malignancies in human liver tissues[J]. Optics & Laser Technology, 98, 291-297(2018).

    [19] Chahal R, Starecki F, Boussard-Plédel C et al. Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers[J]. Sensors and Actuators B: Chemical, 229, 209-216(2016).

    [20] Cheng T L, Kanou Y, Deng D H et al. Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference[J]. Optics Express, 22, 13322-13329(2014).

    [21] Cheng T, Sakai Y, Suzuki T et al. Fabrication and characterization of an all-solid tellurite-phosphate photonic bandgap fiber[J]. Optics Letters, 40, 2088-2090(2015).

    [22] Duan Z C, Tong H T, Liao M S et al. New phospho-tellurite glasses with optimization of transition temperature and refractive index for hybrid microstructured optical fibers[J]. Optical Materials, 35, 2473-2479(2013).

    [23] Sanghera J S, Shaw L B, Aggarwal I D. Applications of chalcogenide glass optical fibers[J]. Comptes Rendus Chimie, 5, 873-883(2002).

    [24] Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [25] Li H X, Lousteau J, MacPherson W N et al. Thermal sensitivity of tellurite and germanate optical fibers[J]. Optics Express, 15, 8857-8863(2007).

    [26] Lucas P, Coleman G J, Jiang S B et al. Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing[J]. Optical Materials, 47, 530-536(2015).

    [27] Béjot P, Billard F, Peureux C et al. Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass[J]. Optics Communications, 380, 245-249(2016).

    [28] Cheng T L, Gao W Q, Kawashima H et al. Experimental observation tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber[C], 1-2(2014).

    [29] Sanghera J S, Nguyen V Q, Pureza P C et al. Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers[J]. Journal of Lightwave Technology, 14, 743-748(1996).

    [30] Nguyen V Q, Sanghera J S, Cole B et al. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities[J]. Journal of the American Ceramic Society, 85, 2056-2058(2002).

    [31] Nguyen V Q, Sanghera J S, Cole B J et al. Fabrication of As-S and As-Se optical fiber with low hydrogen impurities using tellurium tetrachloride (TeCl4)[J]. Proceedings of SPIE, 4987, 274-283(2003).

    [32] Jia Z X, Yao C F, Jia S J et al. Progress on novel mid-infrared glass fibers and relative lasers[J]. Laser & Optoelectronics Progress, 56, 170604(2019).

    [33] Pysz D, Kujawa I, Stepień R et al. Stack and draw fabrication of soft glass microstructured fiber optics[J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 62, 667-682(2014).

    [34] Ebendorff-Heidepriem H, Monro T M. Soft glass microstructured optical fibres: recent progress in fabrication and opportunities for novel optical devices[C], 1-4(2009).

    [35] Kumar V V R K, George A K, Reeves W H et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express, 10, 1520-1525(2002).

    [36] Liu Z L. Simulation of optical properties and optimal designing of photonic crystal fibers[D](2007).

    [37] Zhang Q, Zeng J H, Zhu L et al. Temperature sensors based on multimode chalcogenide fibre Bragg gratings[J]. Journal of Modern Optics, 65, 830-836(2018).

    [38] Cavaleiro P M, Araujo F M, Ferreira L A et al. Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers[J]. IEEE Photonics Technology Letters, 11, 1635-1637(1999).

    [39] Yang D D, Zhang P Q, Zeng J H et al. SRI-immune highly sensitive temperature sensor of long-period fiber gratings in Ge-Sb-Se chalcogenide fibers[J]. Journal of Lightwave Technology, 35, 3974-3979(2017).

    [40] She L, Wang P F, Sun W M et al. A chalcogenide multimode interferometric temperature sensor operating at a wavelength of 2 μm[J]. IEEE Sensors Journal, 17, 1721-1726(2017).

    [41] Yang Z S, Wu Y H, Zhang X D et al. Low temperature fabrication of chalcogenide microsphere resonators for thermal sensing[J]. IEEE Photonics Technology Letters, 29, 66-69(2017).

    [42] Vo T D, He J, Magi E et al. Chalcogenide fiber-based distributed temperature sensor with sub-centimeter spatial resolution and enhanced accuracy[J]. Optics Express, 22, 1560-1568(2014).

    [43] Musolino S, Schartner E P, Tsiminis G et al. Portable optical fiber probe for in vivo brain temperature measurements[J]. Biomedical Optics Express, 7, 3069-3077(2016).

    [44] Lucas P, Solis M A, Coq D L et al. Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells[J]. Sensors and Actuators B: Chemical, 119, 355-362(2006).

    [45] Wilhelm A A, Lucas P, DeRosa D L et al. Biocompatibility of Te-As-Se glass fibers for cell-based bio-optic infrared sensors[J]. Journal of Materials Research, 22, 1098-1104(2007).

    [46] Houizot P, Anne M L, Boussard-Plédel C et al. Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing[J]. Sensors, 14, 17905-17914(2014).

    [47] Romanova E, Korsakova S, Komanec M et al. Multimode chalcogenide fibers for evanescent wave sensing in the mid-IR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 5601507(2016).

    [48] Sharma A K, Dominic A. Fluoride fiber-optic SPR sensor with graphene and NaF layers: analysis of accuracy, sensitivity, and specificity in near infrared[J]. IEEE Sensors Journal, 18, 4053-4058(2018).

    [49] Mizuno Y, He Z, Hotate K. Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry[J]. Optics Communications, 283, 2438-2441(2010).

    [50] Markos C, Bang O. Nonlinear label-free biosensing with high sensitivity using As2S3 chalcogenide tapered fiber[J]. Journal of Lightwave Technology, 33, 2892-2898(2015).

    [51] le Corvec M, Boussard-Plédel C, Charpentier F et al. Chemotaxonomic discrimination of lichen species using an infrared chalcogenide fibre optic sensor: a useful tool for on-field biosourcing[J]. RSC Advances, 6, 108187-108195(2016).

    [52] Heo J, Rodrigues M, Saggese S J et al. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers[J]. Applied Optics, 30, 3944-3951(1991).

    [53] Lucas P, Bureau B. Selenide glass fibers for biochemical infrared sensing[M]. Ahluwalia G K. Applications of chalcogenides: S, Se, and Te, 285-319(2017).

    [54] Sakata H, Kikuchi T. Helium gas-sensing behaviour of iron-tellurite glasses[J]. Journal of Materials Science, 36, 2571-2574(2001).

    [55] Starecki F, Charpentier F, Doualan J L et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers[J]. Sensors and Actuators B: Chemical, 207, 518-525(2015).

    [56] Pelé A L, Braud A, Doualan J L et al. Wavelength conversion in Er3+ doped chalcogenide fibers for optical gas sensors[J]. Optics Express, 23, 4163-4172(2015).

    [57] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [58] Wang L L, Ma W Q, Zhang P Q et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber[J]. Journal of Lightwave Technology, 37, 5193-5198(2019).

    [59] Dai X B, Liu X Y, Liu L et al. A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases[J]. Sensors and Actuators B: Chemical, 220, 414-419(2015).

    [60] Ma S, Wu T, Sun C L et al. Real-time exhaled CO2 gas measurement using a mid-infrared hollow waveguide fiber[J]. Acta Optica Sinica, 40, 1130001(2020).

    [61] Sharma A K, Gupta J. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood[J]. Optical Fiber Technology, 41, 125-130(2018).

    [62] Keirsse J, Boussard-Plédel C, Loreal O et al. Chalcogenide glass fibers used as biosensors[J]. Journal of Non-Crystalline Solids, 326/327, 430-433(2003).

    [63] Bureau B, Zhang X H, Smektala F et al. Recent advances in chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 345/346, 276-283(2004).

    [64] Wu Z H, Xu Y S, Qi D F et al. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers[J]. Infrared Physics & Technology, 102, 102981(2019).

    [65] Anty R, Morvan M, le Corvec M et al. The mid-infrared spectroscopy: a novel non-invasive diagnostic tool for NASH diagnosis in severe obesity[J]. JHEP Reports, 1, 361-368(2019).

    [66] Zhao X D, Xu Y S, Zhang X H et al. Research progress of optical fiber evanescent wave biochemical sensing[J]. Laser & Optoelectronics Progress, 58, 0300005(2021).

    [67] Ahmed I, Collins C A, Lewis M P et al. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering[J]. Biomaterials, 25, 3223-3232(2004).

    [68] Kim Y P, Lee G S, Kim J W et al. Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model[J]. Journal of Tissue Engineering and Regenerative Medicine, 9, 236-246(2015).

    [69] Neel E A A, Ahmed I, Pratten J et al. Characterisation of antibacterial copper releasing degradable phosphate glass fibres[J]. Biomaterials, 26, 2247-2254(2005).

    [70] Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems[J]. Trends in Biotechnology, 22, 354-362(2004).

    [71] Nazhat S N, Neel E A A, Kidane A et al. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers[J]. Biomacromolecules, 8, 543-551(2007).

    Xue Zhou, Xin Yan, Xuenan Zhang, Fang Wang, Shuguang Li, Lei Lang, Tonglei Cheng. Application of Soft-Glass Optical Fibers in Biosensing[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516019
    Download Citation