• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516015 (2021)
Ting Chen and Renping Cao*
Author Affiliations
  • College of Mathematics and Physics, Jinggangshan University, Ji'an, Jiangxi 343009, China
  • show less
    DOI: 10.3788/LOP202158.1516015 Cite this Article Set citation alerts
    Ting Chen, Renping Cao. Advances in Bismuth Ion Luminescence[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516015 Copy Citation Text show less
    References

    [1] Blasse G, Grabmaier B C. A general introduction to luminescent materials[M]. Blasse G, Grabmaier B C. Luminescent materials, 1-9(1994).

    [2] Sun H T, Zhou J J, Qiu J R. Recent advances in bismuth activated photonic materials[J]. Progress in Materials Science, 64, 1-72(2014).

    [3] Gaft M, Reisfeld R, Panczer G[M]. Modern luminescence spectroscopy of minerals and materials(2005).

    [4] Swart H C, Kroon R E. Ultraviolet and visible luminescence from bismuth doped materials[J]. Optical Materials: X, 2, 100025(2019).

    [5] Hershaft A, Corbett J D. The crystal structure of bismuth subchloride: identification of the ion Bi95+[J]. Inorganic Chemistry, 2, 979-985(1963).

    [6] Bjerrum N J, Boston C R, Smith G P. Lower oxidation states of bismuth: Bi+ and [Bi5]3+ in molten salt solutions[J]. Inorganic Chemistry, 6, 1162-1172(1967).

    [7] Ruck M. Bi34Ir3Br37: a pseudo-symmetric subbromide with Bi5+ and Bi62+ polycations, and [IrBi6Br12]- and [IrBi6Br13]2- cluster anions[J]. Physical Inorganic Chemistry, 29, 521-528(1998).

    [8] Corbett J D. Homopolyatomic ions of the heavy post-transition elements. Preparation, properties, and bonding of Bi5(AlCl4)3 and Bi4(A1Cl4)[J]. Inorganic Chemistry, 7, 198-208(1968).

    [9] Kuznetsov A N, Kloo L, Lindsjö M et al. Ab initio calculations on bismuth cluster polycations[J]. Chemistry-A European Journal, 7, 2821-2828(2001).

    [10] Xu L, Bobev S, El-Bahraoui J et al. A naked diatomic molecule of bismuth, [Bi2]2-, with a short Bi-Bi bond: synthesis and structure[J]. Journal of the American Chemical Society, 122, 1838-1839(2000).

    [11] Zhou S, Jiang N, Zhu B et al. Multifunctional Bismuth-doped nanoporous silica glass: from blue-green, orange, red and white light sources to ultra-broadband infrared amplifiers[J]. Advanced Functional Materials, 18, 1407-1413(2008).

    [12] Peng M Y, Wondraczek L. Bi2+-doped strontium borates for white-light-emitting diodes[J]. Optics Letters, 34, 2885-2887(2009).

    [13] Sun H T, Sakka Y, Gao H et al. Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal[J]. Journal of Materials Chemistry, 21, 4060-4063(2011).

    [14] Sun H T, Shimaoka F, Miwa Y et al. Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices[J]. Optics Letters, 35, 2215-2217(2010).

    [15] Sun H T, Sakka Y, Fujii M et al. Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth[J]. Optics Letters, 36, 100-102(2011).

    [16] Setzer K D, Uibel C, Zyrnicki W. et al. Experimental and theoretical study of the electronic states and spectra of BiNa[J]. Journal of Molecular Spectroscopy, 204, 163-175(2000).

    [17] Peng M Y, Dong G P, Wondraczek L et al. Discussion on the origin of NIR emission from Bi-doped materials[J]. Journal of Non-Crystalline Solids, 357, 2241-2245(2011).

    [18] Sun H T, Matsushita Y, Sakka Y et al. Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y[J]. Journal of the American Chemical Society, 134, 2918-2921(2012).

    [19] Bufetov I A, Firstov S V, Khopin V F et al. Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470 nm[J]. Optics Letters, 33, 2227-2229(2008).

    [20] Dianov E M, Firstov S V, Medvedkov O I et al. Luminescence and laser generation in Bi-doped fibers in a spectral region of 1300‒1520 nm[C], OWT3(2009).

    [21] Dianov E M, Firstov S V, Khopin V F et al. Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm[J]. Quantum Electronics, 38, 615-617(2008).

    [22] Dvoyrin V V, Mashinsky V M, Dianov E M et al. Yb-Bi pulsed fiber lasers[J]. Optics Letters, 32, 451-453(2007).

    [23] Xu B B, Tan D Z, Zhou S F et al. Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses[J]. Optics Express, 20, 29105-29111(2012).

    [24] Chen L, Lin C C, Yeh C W et al. Light converting inorganic phosphors for white light-emitting diodes[J]. Materials (Basel), 3, 2172-2195(2010).

    [25] Radhakrishna S, Setty R S S. Bismuth centers in alkali halides[J]. Physical Review B, 14, 969-977(1976).

    [26] Bondybey V E, Schwartz G P, Griffiths J E et al. Spectra of inert-gas matrices containing bismuth: ground-state frequency of Bi2[J]. Chemical Physics Letters, 76, 30-34(1980).

    [27] Zheng J Y, Peng M Y, Kang F W et al. Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model[J]. Optics Express, 20, 22569-22578(2012).

    [28] Zhang N, Qiu J R, Dong G P et al. Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses[J]. Journal of Materials Chemistry, 22, 3154-3159(2012).

    [29] Topol L E, Yosim S J, AEMF Osteryoung R. measurements in molten bismuth: bismuth trichloride solutions[J]. The Journal of Physical Chemistry, 65, 1511-1516(1961).

    [30] Boston C R, Smith G P. Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. i. evidence for two solute species in the system bismuth: bismuth trichloride[J]. The Journal of Physical Chemistry, 66, 1178-1181(1962).

    [31] Boston C R, Smith G P, Howick L C. Spectra of dilute solutions of bismuth metal in molten bismuth trihalides. ii. formulation of solute equilibrium in bismuth trichloride[J]. The Journal of Physical Chemistry, 67, 1849-1852(1963).

    [32] Bjerrum N J, Davis H L, Smith G P. The optical spectrum of bismuth(I) in the molten aluminum bromide-sodium bromide eutectic[J]. Inorganic Chemistry, 6, 1603-1604(1967).

    [33] Romanov A N, Veber A A, Fattakhova Z T et al. Subvalent bismuth monocation Bi+ photoluminescence in ternary halide crystals KAlCl4 and KMgCl3[J]. Journal of Luminescence, 134, 180-183(2013).

    [34] Zheng J Y, Tan L L, Wang L P et al. Superbroad visible to NIR photoluminescence from Bi+ evidenced in Ba2B5O9Cl∶Bi crystal[J]. Optics Express, 24, 2830-2835(2016).

    [35] Vtyurina D N, Eistrikh-Geller P A, Kuz’Micheva G M et al. Influence of monovalent Bi+ doping on real composition, point defects, and photoluminescence in TlCdCl3 and TlCdI3 single crystals[J]. Science China Materials, 60, 1253-1263(2017).

    [36] Romanov A N, Haula E V, Kouznetsov M S et al. Preparation of optical media with NIR luminescent Bi+ impurity centers by ion exchange[J]. Journal of the American Ceramic Society, 102, 2745-2751(2018).

    [37] Fedorov Y, Aseev V, Tuzova I et al. Bi-activated glasses and their potential covering spectral region as active media for tunable near infrared lasers[J]. Key Engineering Materials, 822, 841-847(2019).

    [38] Dan H K, Le D N, Nguyen-Truong H T et al. Effects of Y3+on the enhancement NIR emission of Bi+-Er3+ co-doped in transparent silicate glass-ceramics for Erbium-doped fiber amplifier (EDFA)[J]. Journal of Luminescence, 219, 116942(2020).

    [39] Hamstra M A, Folkerts H F, Blasse G. Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates[J]. Journal of Materials Chemistry, 4, 1349-1350(1994).

    [40] Cao R P, Peng M Y, Qiu J R. Photoluminescence of Bi2+-doped BaSO4 as a red phosphor for white LEDs[J]. Optics Express, 20, A977-A983(2012).

    [41] Peng M Y, Wondraczek L. Orange-to-red emission from Bi2+and alkaline earth codoped strontium borate phosphors for white light emitting diodes[J]. Journal of the American Ceramic Society, 93, 1437-1442(2010).

    [42] Cao R P, Zhang F T, Liao C X et al. Yellow-to-orange emission from Bi2+-doped RF2 (R=Ca and Sr) phosphors[J]. Optics Express, 21, 15728-15733(2013).

    [43] Li L Y, Peng M Y, Viana B et al. Unusual concentration induced antithermal quenching of the Bi2+ emission from Sr2P2O7∶Bi2+[J]. Inorganic Chemistry, 54, 6028-6034(2015).

    [44] Cao R P, Cao Y L, Fu T et al. Synthesis and luminescence properties of novel red-emitting R3P4O13∶Bi2+ (R=Sr and Ba) phosphors[J]. Journal of Alloys and Compounds, 661, 77-81(2016).

    [45] Li L Y, Cao J K, Viana B et al. Site occupancy preference and antithermal quenching of the Bi2+ deep red emission in β-Ca2P2O7∶Bi2+[J]. Inorganic Chemistry, 56, 6499-6506(2017).

    [46] Sun S H, Jia B N, Yan B B et al. Optical absorption of Bi2+-ODC(II) active center in Bi-doped silica optical fiber[J]. Journal of Luminescence, 213, 304-309(2019).

    [47] Setlur A A, Srivastava A M. The nature of Bi3+ luminescence in garnet hosts[J]. Optical Materials, 29, 410-415(2006).

    [48] Yao S Y, Zhou X, Huang Y L et al. Luminescent properties of Bi3+-activated Ca2Sb2O7 nano-phosphor prepared by co-precipitation method[J]. Journal of Alloys and Compounds, 653, 345-350(2015).

    [49] Lephoto M A, Tshabalala K G, Motloung S J et al. Photoluminescence studies of green emitting BaB8O13∶Bi3+ phosphors prepared by solution combustion method[J]. Journal of Luminescence, 200, 94-102(2018).

    [50] Cao R P, Quan G J, Shi Z H et al. Synthesis and luminescence properties of LiBaPO4∶Bi3+ yellow-emitting phosphor for solid-state lighting[J]. Journal of Materials Science: Materials in Electronics, 29, 5287-5292(2018).

    [51] Cao R P, Chen T, Ren Y C et al. Tunable emission of LiCa3MgV3O12∶Bi3+ via energy transfer and changing excitation wavelength[J]. Materials Research Bulletin, 111, 87-92(2019).

    [52] Liao C L, Cao R P, Wang W D et al. Photoluminescence properties and energy transfer of NaY(MoO4)2∶R (R = Sm3+/Bi3+, Tb3+/Bi3+, Sm3+/Tb3+) phosphors[J]. Materials Research Bulletin, 97, 490-496(2018).

    [53] Cao R P, Xiao H, Zhang F L et al. Synthesis, energy transfer, charge compensation and luminescence properties of CaZrO3∶Eu3+, Bi3+, Li+ phosphor[J]. Journal of Materials Science: Materials in Electronics, 30, 2327-2333(2019).

    [54] Song W H, Chen X Y, Teng L M et al. Energy transfer and color-tunable emission in Ba2Y2Si4O13∶Bi3+, Eu3+ phosphors[J]. Journal of the American Chemical Society, 102, 1822-1831(2019).

    [55] Wang H, Chen X Y, Teng L M et al. Adjustable emission and energy transfer process in BaGd2O4∶Bi3+, Eu3+ phosphors[J]. Journal of Luminescence, 206, 185-191(2019).

    [56] Wang X J, Liang L F, Chen K et al. Synthesis and luminescence properties of Sr5MgLa2-x-y(BO3)6∶xBi3+, yM (M=Eu3+, Y3+) phosphors[J]. Acta Optica Sinica, 39, 1116001(2019).

    [57] Zheng Z G, Zhang J F, Liu X Y et al. Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12∶Bi3+, Eu3+ phosphors[J]. Ceramics International, 46, 6154-6159(2020).

    [58] Zhang W N, Tong Y, Hu F F et al. A novel single-phase Na3.6Y1.8(PO4)3∶Bi3+, Eu3+ phosphor for tunable and white light emission[J]. Ceramics International, 47, 284-291(2021).

    [59] Chen K, Wang X J, Yang G H et al. Luminescent properties of Ca2GdZr2Al3O12∶Mn4+ and Bi3+ codoped phosphors[J]. Acta Optica Sinica, 39, 0216001(2019).

    [60] Giraldo O G, Fei M Z, Wei R F et al. Energy transfer and white luminescence in Bi3+/Eu3+ co-doped oxide glasses[J]. Journal of Luminescence, 219, 116918(2020).

    [61] Xia H P, Wang X J. Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses[J]. Applied Physics Letters, 89, 051917(2006).

    [62] Sokolov V O, Plotnichenko V G, Koltashev V V et al. Centres of broadband near-IR luminescence in bismuth-doped glasses[J]. Journal of Physics D: Applied Physics, 42, 095410(2009).

    [63] Sun H T, Yonezawa T, Gillett-Kunnath M M et al. Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2- dimers[J]. Journal of Materials Chemistry, 22, 20175-20178(2012).

    [64] Sun H T, Sakka Y, Shirahata N et al. Experimental and theoretical studies of photoluminescence from Bi82+ and Bi53+ stabilized by [AlCl4]- in molecular crystals[J]. Journal of Materials Chemistry, 22, 12837-12841(2012).

    [65] Cao R P, Peng M Y, Wondraczek L et al. Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3[J]. Optics Express, 20, 2562-2571(2012).

    [66] Cao R P, Peng M Y, Zheng J Y et al. Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3[J]. Optics Express, 20, 18505-18514(2012).

    Ting Chen, Renping Cao. Advances in Bismuth Ion Luminescence[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516015
    Download Citation