• Opto-Electronic Advances
  • Vol. 3, Issue 7, 190033-1 (2020)
Junyuan Han1、2、4, Yali Huang3, Jiliang Wu1、2, Zhenrui Li3, Yuede Yang1、2, Jinlong Xiao1、2, Daming Zhang3, Guanshi Qin3、*, and Yongzhen Huang1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Opto-Electronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
  • 4National Key Laboratory of Science and Technology on Electronic Test and Measurement, the 41st Research Institute, China Electronics Technology Group Corporation, Qingdao 266555, China
  • show less
    DOI: 10.29026/oea.2020.190033 Cite this Article
    Junyuan Han, Yali Huang, Jiliang Wu, Zhenrui Li, Yuede Yang, Jinlong Xiao, Daming Zhang, Guanshi Qin, Yongzhen Huang. 10-GHz broadband optical frequency comb generation at 1550/1310 nm[J]. Opto-Electronic Advances, 2020, 3(7): 190033-1 Copy Citation Text show less
    References

    [1] D J Jones, S A Diddams, J K Ranka, A Stentz, R S Windeler et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [2] F Quinlan, G Ycas, S Osterman, S A Diddams. A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration. Rev Sci Instrum, 81, 063105(2010).

    [3] T Wilken, G L Curto, R A Probst, T Steinmetz, A Manescau et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 485, 611-614(2012).

    [4] Z Jiang, C B Huang, D E Leaird, A M Weiner. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 1, 463-467(2007).

    [5] S T Cundiff, A M Weiner. Optical arbitrary waveform generation. Nat Photonics, 4, 760-766(2010).

    [6] E Hamidi, D E Leaird, A M Weiner. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech, 58, 3269-3278(2010).

    [7] H Hu, Ros F Da, M H Pu, F H Ye, K Ingerslev et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat Photonics, 12, 469-473(2018).

    [8] A Bartels, D Heinecke, S A Diddams. 10-GHz self-referenced optical frequency comb. Science, 326, 681(2009).

    [9] M Yoshida, K Yoshida, K Kasai, M Nakazawa. 1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser. Opt Express, 24, 24287-24296(2016).

    [10] M Nakazawa, K Kasai, M Yoshida. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 μm. Opt Lett, 33, 2641-2643(2008).

    [11] V Torres-Company, A M Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 8, 368-393(2014).

    [12] Y J Dou, H M Zhang, M Y Yao. Generation of flat optical-frequency comb using cascaded intensity and phase modulators. IEEE Photonics Technol Lett, 24, 727-729(2012).

    [13] R Wu, V R Supradeepa, C M Long, D E Leaird, A M Weiner. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 35, 3234-3236(2010).

    [14] A J Metcalf, V Torres-Company, D E Leaird, A M Weiner. High-power broadly tunable electrooptic frequency comb generator. IEEE J Sel Top Quant Electron, 19, 3500306(2013).

    [15] A Ishizawa, T Nishikawa, A Mizutori, H Takara, S Aozasa et al. Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking. Electron Lett, 46, 1343-1344(2010).

    [16] X Yang, D J Richardson, P Petropoulos. Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping. J Lightwave Technol, 30, 1971-1977(2012).

    [17] T Yang, J J Dong, S S Liao, D X Huang, X L Zhang. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Opt Express, 21, 8508-8520(2013).

    [18] E Myslivets, N Alic, S Radic. High resolution measurement of arbitrary-dispersion fibers: dispersion map reconstruction techniques. J Lightwave Technol, 28, 3478-3487(2010).

    [19] E Myslivets, B P P Kuo, N Alic, S Radic. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt Express, 20, 3331-3344(2012).

    [20] V Ataie, E Temprana, L Liu, E Myslivets, B P P Kuo et al. Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer. J Lightwave Technol, 33, 694-699(2015).

    [21] A Rueda, F Sedlmeir, M Kumari, G Leuchs, H G L Schwefel. Resonant electro-optic frequency comb. Nature, 568, 378-381(2019).

    [22] M Zhang, B Buscaino, C Wang, A Shams-Ansari, C Reimer et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [23] L P Barry, S Del Burgo, B Thomsen, R T Watts, D A Reid et al. Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequency resolved optical gating. IEEE Photonics Technol Lett, 14, 971-973(2002).

    [24] G P Agrawal. Nonlinear Fiber Optics 3rd ed(2001).

    [25] Y L Huang, Q Li, J Y Han, Z X Jia, Y S Yu et al. Temporal soliton and optical frequency comb generation in a Brillouin laser cavity. Optica, 6, 1491-1497(2019).

    [26] H Z Weng, J Y Han, Q Li, Y D Yang, J L Xiao et al. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop. Appl Phys B, 124, 91(2018).

    [27] P Marin-Palomo, J N Kemal, M Karpov, A Kordts, J Pfeifle et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [28] Z G Chen, A J Taylor, A Efimov. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper. Opt Express, 17, 5852-5860(2009).

    [29] C C Yao, Z X Jia, Z R Li, S J Jia, Z P Zhao et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica, 5, 1264-1270(2018).

    [30] C C Yao, Z P Zhao, Z X Jia, Q Li, M L Hu et al. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber. Appl Phys Lett, 109, 101102(2016).

    [31] Z X Jia, C C Yao, S J Jia, F Wang, S B Wang et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber. Appl Phys Lett, 110, 261106(2017).

    Junyuan Han, Yali Huang, Jiliang Wu, Zhenrui Li, Yuede Yang, Jinlong Xiao, Daming Zhang, Guanshi Qin, Yongzhen Huang. 10-GHz broadband optical frequency comb generation at 1550/1310 nm[J]. Opto-Electronic Advances, 2020, 3(7): 190033-1
    Download Citation