• Opto-Electronic Advances
  • Vol. 3, Issue 7, 190033-1 (2020)
Junyuan Han1、2、4, Yali Huang3, Jiliang Wu1、2, Zhenrui Li3, Yuede Yang1、2, Jinlong Xiao1、2, Daming Zhang3, Guanshi Qin3、*, and Yongzhen Huang1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Opto-Electronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
  • 4National Key Laboratory of Science and Technology on Electronic Test and Measurement, the 41st Research Institute, China Electronics Technology Group Corporation, Qingdao 266555, China
  • show less
    DOI: 10.29026/oea.2020.190033 Cite this Article
    Junyuan Han, Yali Huang, Jiliang Wu, Zhenrui Li, Yuede Yang, Jinlong Xiao, Daming Zhang, Guanshi Qin, Yongzhen Huang. 10-GHz broadband optical frequency comb generation at 1550/1310 nm[J]. Opto-Electronic Advances, 2020, 3(7): 190033-1 Copy Citation Text show less
    The 10 GHz OFC and a 2.3-ps pulse generated from a mode-locked laser with (a) OFC spectrum, and (b) reconstructed temporal pulse profile (blue solid curve) and Gaussian fitting curve (red dotted curve).
    Fig. 1. The 10 GHz OFC and a 2.3-ps pulse generated from a mode-locked laser with (a) OFC spectrum, and (b) reconstructed temporal pulse profile (blue solid curve) and Gaussian fitting curve (red dotted curve).
    Optical spectra after propagation in 500 m HNLF. (a) The experimental results when the input optical power into the HNLF is 15 dBm, 17 dBm, 19 dBm, 20 dBm, respectively. (b) The simulation results when the input optical power is 14 dBm, 16 dBm, 18 dBm, 19 dBm, respectively.
    Fig. 2. Optical spectra after propagation in 500 m HNLF. (a) The experimental results when the input optical power into the HNLF is 15 dBm, 17 dBm, 19 dBm, 20 dBm, respectively. (b) The simulation results when the input optical power is 14 dBm, 16 dBm, 18 dBm, 19 dBm, respectively.
    (a) RF spectrum from the broadened frequency comb at 20 dBm pump power (RBW=200 kHz and VBW=50 kHz). (b) Reconstructed temporal pulse profile with a FWHM duration of 291 fs after transmitting a 4 m SMF at 20 dBm pump power (blue solid curve) and Gaussian fitting curve (red dotted curve).
    Fig. 3. (a) RF spectrum from the broadened frequency comb at 20 dBm pump power (RBW=200 kHz and VBW=50 kHz). (b) Reconstructed temporal pulse profile with a FWHM duration of 291 fs after transmitting a 4 m SMF at 20 dBm pump power (blue solid curve) and Gaussian fitting curve (red dotted curve).
    Optical spectra of the generated flat-topped OFC.(a) The 10 GHz repetition rate at 26.5 dBm pump power. (b) The 18.5 GHz repetition rate at 25.5 dBm pump power.
    Fig. 4. Optical spectra of the generated flat-topped OFC. (a) The 10 GHz repetition rate at 26.5 dBm pump power. (b) The 18.5 GHz repetition rate at 25.5 dBm pump power.
    (a) Experimental supercontinuum spectra designed to produce a dispersive wave centered around 1310 nm. (b) RF spectra from the generated 1310 nm dispersion wave at 32 dBm pump power (RBW=200 kHz and VBW=50 kHz).
    Fig. 5. (a) Experimental supercontinuum spectra designed to produce a dispersive wave centered around 1310 nm. (b) RF spectra from the generated 1310 nm dispersion wave at 32 dBm pump power (RBW=200 kHz and VBW=50 kHz).
    The calculated dispersions of the fibers with different sizes. Insets, scanning electron microscope images of the fibers with the diameters of 3.7 μm, 3.3 μm and 3.1 μm, respectively.
    Fig. 6. The calculated dispersions of the fibers with different sizes. Insets, scanning electron microscope images of the fibers with the diameters of 3.7 μm, 3.3 μm and 3.1 μm, respectively.
    (a) Optical spectra with a dispersive wave centered around 1310 nm from a fluorotellurite fiber under different launched powers of the femtosecond laser. (b) Optical spectra with tunable dispersive waves ranging from 1150 nm to 1310 nm from fluorotellurite fibers 1, 2, 3 with ZDWs at 1358 nm, 1409 nm and 1452 nm, respectively.
    Fig. 7. (a) Optical spectra with a dispersive wave centered around 1310 nm from a fluorotellurite fiber under different launched powers of the femtosecond laser. (b) Optical spectra with tunable dispersive waves ranging from 1150 nm to 1310 nm from fluorotellurite fibers 1, 2, 3 with ZDWs at 1358 nm, 1409 nm and 1452 nm, respectively.
    (a) The simulated and measured SC from the fluorotellurite fiber with the ZDW of 1452 nm and the peak pump power of 387 W. (b) RF spectrum from the generated 1310 nm dispersion wave in the fluorotellurite fiber (RBW=200 kHz and VBW=50 kHz).
    Fig. 8. (a) The simulated and measured SC from the fluorotellurite fiber with the ZDW of 1452 nm and the peak pump power of 387 W. (b) RF spectrum from the generated 1310 nm dispersion wave in the fluorotellurite fiber (RBW=200 kHz and VBW=50 kHz).
    Junyuan Han, Yali Huang, Jiliang Wu, Zhenrui Li, Yuede Yang, Jinlong Xiao, Daming Zhang, Guanshi Qin, Yongzhen Huang. 10-GHz broadband optical frequency comb generation at 1550/1310 nm[J]. Opto-Electronic Advances, 2020, 3(7): 190033-1
    Download Citation