• Laser & Optoelectronics Progress
  • Vol. 49, Issue 5, 50003 (2012)
Yang Zhangcheng*, Xu Hanfeng, and Dong Xinyong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop49.050003 Cite this Article Set citation alerts
    Yang Zhangcheng, Xu Hanfeng, Dong Xinyong. Research Development of High-Temperature Resistant Fiber Gratings[J]. Laser & Optoelectronics Progress, 2012, 49(5): 50003 Copy Citation Text show less
    References

    [1] K. O. Hill, Y. Fujii, D. C. Johnson et al.. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Appl. Phys. Lett., 1978, 32(10): 647~649

    [2] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Opt. Lett., 1989, 14(15): 823~825

    [3] K. O. Hill, B. Malo, F. Bilodeau et al.. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Appl. Phys. Lett., 1993, 62(10): 1035~1037

    [4] P. J. Lemaire, R. M. Atkins, V. Mizrahi et al.. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electron. Lett., 1993, 29(13): 1191~1193

    [5] S. R. Baker, H. N. Rourke, V. Baker et al.. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber[J]. J. Lightwave Technol., 1997, 15(8): 1470~1477

    [6] Qiao Xueguang, Li Ting, Wang Hongliang et al.. Response characteristics of high temperature resistant fiber Bragg grating[J]. J. Applied Optics, 2007, 28(2): 209~211

    [7] Zhan Yage, Xiang Shiqing, Hong He et al.. Study on high temperature optic fiber grating sensor[J]. Chinese J. Lasers, 2005, 32(9): 1235~1238

    [8] Jiang Chao, Hu Zhaowei, Jia Xuemin. Research progress of high-temperature fiber sensors[J]. Transducer and Microsystem Technologies, 2008, 27(10): 1~4

    [9] Liu Qinpeng, Qiao Xueguang, Jia Zhen′an et al.. Research of high temperature sensing for fiber Bragg grating[J]. J. Optoelectronics·Laser, 2007, 18(2): 147~149

    [10] Yu Dakuan, Qiao Xueguang, Jia Zhen′an et al.. A novel packaged fiber Bragg grating temperature sensor with high temperature-resistance[J]. Acta Photonica Sinica, 2006, 35(2): 232~234

    [11] J. L. Archambault, L. Reekie, P. St. J. Russell. 100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses[J]. Electron. Lett., 1993, 29(5): 453~455

    [12] H. Bartelt, K. Schuster, S. Unger et al.. Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures[J]. Appl. Opt., 2007, 46(17): 3417~3424

    [13] S. J. Mihailov, C. W. Smelser, P. Lu et al.. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation[J]. Opt. Lett., 2003, 28(12): 995~997

    [14] P. C. Hill, G. R. Atkins, J. Canning et al.. Writing and visualization of low-threshold type Ⅱ Bragg gratings in stressed optical fibers[J]. Appl. Opt., 1995, 34(33): 7689~7694

    [15] A. Martinez, I.Y. Khrushchev, I. Bennion. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser[J]. Electron. Lett., 2005, 41(4): 224~225

    [16] S. J. Mihailov, C. W. Smelser, D. Grobnic et al.. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask[J]. J. Lightwave Technol., 2004, 22(1): 94~100

    [17] C. W. Smelser, S. J. Mihailov, D. Grobnic. Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask[J]. Opt. Lett., 2004, 29(18): 2127~2129

    [18] D. Grobnic, S. J. Mihailov, C. W. Smelser et al.. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE Photon. Technol. Lett., 2004, 16(11): 2505~2507

    [19] P. Niay, P. Bernage, S. Legoubin et al.. Behavior of spectral transmissions of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or CW UV exposure[J]. Opt. Commun., 1994, 113(1-3): 176~192

    [20] L. Dong, W. F. Liu, L. Reekie. Negative-index gratings formed by a 193-nm excimer laser[J]. Opt. Lett., 1996, 21(24): 2032~2034

    [21] N. Groothoff, J. Canning. Enhanced type ⅡA gratings for high-temperature operation[J]. Opt. Lett., 2004, 29(20): 2360~2362

    [22] I. Riant, F. Haller. Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm, influence of fiber tension: type ⅡA aging[J]. J. Lightwave Technol., 1997, 15(8): 1464~1469

    [23] M. Fokine. Formation of thermally stable chemical composition gratings in optical fibers[J]. J. Opt. Soc. Am. B, 2002, 19(8): 1759~1765

    [24] M. Fokine. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers[J]. Opt. Lett., 2002, 27(22): 1974~1976

    [25] M. Fokine. Thermal stability of oxygen-modulated chemical composition gratings in standard telecommunication fiber[J]. Opt. Lett., 2004, 29(11): 1185~1187

    [26] B. Zhang, M. Kahrizi. High-temperature resistance fiber Bragg grating temperature sensor fabrication[J]. IEEE Sens. J., 2007, 7(4): 586~591

    [27] S. Trpkovski, D. J. Kitcher, G. W. Baxter et al.. High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber[J]. Opt. Lett., 2005, 30(6): 607~609

    [28] J. Canning, M. Stevenson, S. Bandyopadhyay et al.. Extreme silica optical fibre gratings[J]. Sensors, 2008, 8(10): 6448~6452

    [29] J. J. Zhu, A. P. Zhang, B. Zhou et al.. Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers[J]. Opt. Commun., 2011, 284(12): 2808~2811

    [30] Zhu Jingjing, Jiang Yurong, Xue Wei. Research on the hydrogen-load of B-Ge co-doped fiber chemical composition grating[J]. Trans. Beijing Inst. Technol., 2011, 31(1): 83~86

    [31] J. Canning, J. Fenton, M. Stevenson. Ultra-strong regenerated gratings[C]. 14th Optoelectronics and Communications Conference, 2009

    [32] L. Dong, J. L. Cruz, L. Reekie et al.. Enhanced photosensitivity in tin-codoped germanosilicate optical fibers[J]. IEEE Photon. Technol. Lett., 1995, 7(9): 1048~1050

    [33] Y. H. Shen, J. L. He, T. Sun et al.. High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing[J]. Opt. Lett., 2004, 29(6): 554~556

    [34] Y. H. Shen, J. Xia, T. Sun et al.. Photosensitive indium-doped germano-silica fiber for strong FBGs with high temperature sustainability[J]. IEEE Photon. Technol. Lett., 2004, 16(5): 1319~1321

    [35] Y. H. Shen, J. L. He, Y. Q. Qiu et al.. Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability[J]. J. Opt. Soc. Am. B, 2007, 24(3): 430~438

    [36] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins et al.. Long-period fiber gratings as band-rejection filters[J]. J. Lightwave Technol., 1996, 14(1): 58~65

    [37] D. D. Davis, T. K. Gaylord, E. N. Glytsis et al.. Very-high-temperature stable CO2-laser-induced long-period fibre gratings[J]. Electron Lett., 1999, 35(9): 740~742

    [38] D. D. Davis, T. K. Gaylord, E. N. Glytsis et al.. CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarisation independence[J]. Electron. Lett., 1998, 34(14): 1416~1417

    [39] Guang Shouhua, Zheng Jianzhou , Yu Qingxu. High temperature sensing characteristics of long-period fibre gratings[J]. J. Shenyang University of Technology, 2008, 30(5): 559~563

    [40] G. Humbert, A. Malki. Characterizations at very high temperature of electric arc-induced long-period fiber gratings[J]. Opt. Commun., 2002, 208(4-6): 329~335

    [41] G. Humbert, A. Malki, S. Février et al.. Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber[J]. Opt. Lett., 2004, 29(1): 38~40

    CLP Journals

    [1] Li Jieyan, Zhang Dongsheng, Zhou Zude, Guo Yongxing. High Temperature Resistant Metal Packaged Multiplexed Fiber-Optic Extrinsic Fabry-Perot Interferometer and Fiber Bragg Grating Sensor[J]. Acta Optica Sinica, 2013, 33(s1): 106002

    [2] He Rushuang, Zhang Bin, Tao Weidong, Yan Feibiao, Duan Tianchen, Dong Jianfeng. Research on Sensing Characteristic of a Micro-Region Etched Long-Period Fiber Grating Michelson Interferometer[J]. Laser & Optoelectronics Progress, 2014, 51(8): 80604

    [3] Wang Wenyuan, Wen Jianxiang, Pang Fufei, Chen Na, Wang Tingyun. All Single-Mode Fiber Fabry-Pérot Interferometric High Temperature Sensor Fabricated with Femtosecond Laser[J]. Chinese Journal of Lasers, 2012, 39(10): 1005001

    [4] Zhang Guihua, Chai Jing, Li Xujuan, Mi Xufeng, Li Yi, Hao Lei. Research on Strain Transfer of Surface Fiber Grating Sensor[J]. Laser & Optoelectronics Progress, 2014, 51(1): 10601

    [5] Du Yong, Si Jinhai, Chen Tao, Li Sijia, Cui Wei, Li Cunxia, Hou Xun. Quasi-Distributed High Temperature Sensor Based on Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100606

    [6] Tang Xuemin, An Jiali, Jin Yongxing. Study of Humidity Sensor Based on Mach-Zehnder Interference[J]. Laser & Optoelectronics Progress, 2014, 51(6): 60603

    [7] Zhou Yabin, Zeng Jie, Zhang Qianyun, Shi Qinghua, Li Jifeng, Cao Haidong, Zhang Xianhui. Measurement of the Thermal Diffusivity of Carbon Composite by Water-Heat Balance Method[J]. Chinese Journal of Lasers, 2013, 40(11): 1108001

    [8] Zheng Wenning, Zhu Lianqing, Zhuang Wei, Xin Jingtao. Influence of Electrode Discharge on Fiber Bragg Grating Spectral Characteristics[J]. Chinese Journal of Lasers, 2016, 43(7): 706003

    [9] Pan Hongliang, Dong Huijuan, Zhang Guangyu, He Jun. Research on Fiber Grating Pressure/Temperature Monitoring Device of Distinguish Range and Double Sensitivity[J]. Chinese Journal of Lasers, 2013, 40(2): 205005

    [10] Wang Qiaoni, Yang Yuanhong, He Jun, Wang Yiping. Study of Fiber Bragg Grating Regeneration Process and Regeneration Model[J]. Acta Optica Sinica, 2016, 36(3): 306001

    Yang Zhangcheng, Xu Hanfeng, Dong Xinyong. Research Development of High-Temperature Resistant Fiber Gratings[J]. Laser & Optoelectronics Progress, 2012, 49(5): 50003
    Download Citation