• Photonics Research
  • Vol. 10, Issue 3, 769 (2022)
Ying She1、2、3, Chen Ji1, Cheng Huang1、3, Zuojun Zhang1, Jianming Liao1、3, Jiangyu Wang1、2、3, and Xiangang Luo1、3、*
Author Affiliations
  • 1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.450297 Cite this Article Set citation alerts
    Ying She, Chen Ji, Cheng Huang, Zuojun Zhang, Jianming Liao, Jiangyu Wang, Xiangang Luo. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769 Copy Citation Text show less
    References

    [1] M. A. McEvoy, N. Correll. Materials that couple sensing, actuation, computation, and communication. Science, 347, 1261689(2015).

    [2] C. Kaspar, B. Ravoo, W. van der Wiel, S. Wegner, W. Pernice. The rise of intelligent matter. Nature, 594, 345-355(2021).

    [3] O. Tsilipakos, A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S. Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Adv. Opt. Mater., 8, 2000783(2020).

    [4] T. Cui, B. Bai, H. Sun. Tunable metasurfaces based on active materials. Adv. Funct. Mater., 29, 1806692(2019).

    [5] A. Nemati, W. Qian, M. Hong, J. Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2019).

    [6] C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, X. Luo. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photon., 5, 1718-1725(2017).

    [7] C. Huang, B. Zhao, J. Song, C. Guan, X. Luo. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude. IEEE Trans. Antennas Propag., 69, 3593-3598(2021).

    [8] K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [9] M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 27, 1700580(2017).

    [10] A. de Lustrac, B. Ratni, G. P. Piau, Y. Duval, S. N. Burokur. Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities. ACS Appl. Electron. Mater., 3, 1184-1190(2021).

    [11] M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [12] H. S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818-2823(2016).

    [13] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. S. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [14] S. H. Badri, M. M. Gilarlue, S. SaeidNahaei, J. S. Kim. Narrowband-to-broadband switchable and polarization-intensitive terahertz metasurface absorber enabled by phase change material. J. Opt., 24, 025101(2021).

    [15] S. H. Badri, M. M. Gilarlue, S. G. Farkoush, S. B. Rhee. Reconfigurable bandpass optical filters based on subwavelength grating waveguides with Ge2Sb2Te5 cavity. J. Opt. Soc. Am. B, 38, 1283-1289(2021).

    [16] C. Huang, J. Yang, C. Ji, L. Yuan, X. Luo. Graphene-driven metadevice for active microwave camouflage with high-efficiency transmission window. Small Methods, 5, 2000918(2021).

    [17] H. Wang, C. Hao, H. Lin, Y. Wang, L. Lan, C. Qiu, H. Bao. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron. Adv., 4, 20003101(2021).

    [18] B. Lee, J. Park, G. H. Han, H. Ee, C. Naylor, W. Liu, A. T. Charlie, J. Agarwal. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett., 15, 3646-3653(2015).

    [19] R. Kowerdziej, M. Olifierczuk, J. Parka, J. Wrobel. Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal. Appl. Phys. Lett., 105, 022908(2014).

    [20] C. Huang, J. Song, C. Ji, J. Yang, X. Luo. Simultaneous control of absorbing frequency and amplitude using graphene capacitor and Active frequency-selective surface. IEEE Trans. Antennas Propag., 69, 1793-1798(2021).

    [21] R. Wu, L. Bao, L. Wu, T. J. Cui. Broadband transmission-type 1-bit coding metasurfaces for electromagnetic beam forming and scanning. Sci. China Phys. Mech. Astron., 63, 284211(2020).

    [22] T. J. Cui, M. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programming metamaterials. Light Sci. Appl., 3, e218(2014).

    [23] C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, X. Luo. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep., 7, 42302(2017).

    [24] L. Zhang, Z. X. Wang, R. W. Shao, J. L. Shen, X. Q. Chen, X. Wan, Q. Cheng, T. J. Cui. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Trans. Antennas Propag., 68, 2984-2992(2020).

    [25] Q. Ma, T. J. Cui. Information metamaterials: bridging the physical world and digital world. PhotoniX, 1, 1(2020).

    [26] J. Liao, S. Guo, L. Yuan, C. Ji, C. Huang, X. Luo. Independent manipulation of reflection amplitude and phase by a single-layer reconfigurable metasurface. Adv. Opt. Mater., 2101551(2021).

    [27] R. Feng, B. Ratni, J. Yi, H. Zhang, A. de Lustrac, S. N. Burokur. Versatile metasurface platform for electromagnetic wave tailoring. Photon. Res., 9, 1650-1659(2021).

    [28] B. Liu, Y. He, S. W. Wong, Y. Li. Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv. Opt. Mater., 9, 2001689(2021).

    [29] H. L. Wang, H. F. Ma, M. Chen, S. Sun, T. J. Cui. A reconfigurable multifunctional metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater., 31, 2100275(2021).

    [30] C. Huang, C. Ji, B. Zhao, J. Peng, L. Yuan, X. Luo. Multifunctional and tunable radar absorber based on graphene-integrated active metasurface. Adv. Mater. Technol., 6, 2001050(2021).

    [31] C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, X. Luo. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [32] R. Phon, S. Ghosh, S. Lim. Novel multifunctional reconfigurable active frequency selective surface. IEEE Trans. Antennas Propag., 67, 1709-1718(2018).

    [33] Q. Ma, G. D. Bai, H. B. Jing, C. Yang, L. Li, T. J. Cui. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl., 8, 98(2019).

    [34] Q. Ma, Q. R. Hong, X. X. Gao, H. B. Jing, C. Liu, G. D. Bai, Q. Cheng, T. J. Cui. Smart metasurface with self-adaptively reprogrammable functions. Nanophotonics, 9, 3271-3278(2020).

    [35] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, H. Chen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [36] H. Li, Q. Cao, L. Liu, Y. Wang. An improved multifunctional active frequency selective surface. IEEE Trans. Antennas Propag., 66, 1854-1862(2018).

    Ying She, Chen Ji, Cheng Huang, Zuojun Zhang, Jianming Liao, Jiangyu Wang, Xiangang Luo. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769
    Download Citation