• Acta Optica Sinica
  • Vol. 40, Issue 4, 0426001 (2020)
Han Wang, Haofeng Zang, Yonghua Lu*, and Pei Wang
Author Affiliations
  • Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
  • show less
    DOI: 10.3788/AOS202040.0426001 Cite this Article Set citation alerts
    Han Wang, Haofeng Zang, Yonghua Lu, Pei Wang. Mode Properties and Fluorescence Emission Mediation of Metal-Dielectric-Metal Nanoantenna Array[J]. Acta Optica Sinica, 2020, 40(4): 0426001 Copy Citation Text show less
    References

    [1] Starowicz Z, Wojnarowska-Nowak R, Ozga P et al. The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect[J]. Colloid and Polymer Science, 296, 1029-1037(2018).

    [2] Rajput M, Sinha R K. Effect of different plasmonic nano-inclusion on double negative-semiconductor photonic crystal in visible region: gain assistance and all-angle negative refraction[J]. Journal of Electronic Science and Technology, 8, 10-15(2010).

    [3] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006).

    [4] Pelton M. Modified spontaneous emission in nanophotonic structures[J]. Nature Photonics, 9, 427-435(2015).

    [5] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [6] Hess O, Pendry J B, Maier S A et al. Active nanoplasmonic metamaterials[J]. Nature Materials, 11, 573-584(2012).

    [7] Bauch M, Dostalek J. Collective localized surface plasmons for high performance fluorescence biosensing[J]. Optics Express, 21, 20470-20483(2013).

    [8] El-Sayed I H, Huang X H, El-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano Letters, 5, 829-834(2005).

    [9] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013).

    [10] Xu Q, Liu F, Meng W S et al. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells[J]. Optics Express, 20, A898-A907(2012).

    [11] Tsakmakidis K L, Boyd R W, Yablonovitch E et al. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers [Invited][J]. Optics Express, 24, 17916-17927(2016).

    [12] Wei D, Chen S, Liu Q. Review of fluorescence suppression techniques in Raman spectroscopy[J]. Applied Spectroscopy Reviews, 50, 387-406(2015).

    [13] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 58, 267-297(2007).

    [14] Ming T, Zhao L, Yang Z et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods[J]. Nano Letters, 9, 3896-3903(2009).

    [15] Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014).

    [16] Zhou W, Odom T W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions[J]. Nature Nanotechnology, 6, 423-427(2011).

    [17] Kravets V G, Schedin F, Grigorenko A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons inarrays of metallic nanoparticles[J]. Physical Review Letters, 101, 087403(2008). http://europepmc.org/abstract/MED/18764660

    [18] Tang C J, Zhan P, Cao Z S et al. Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials[J]. Physical Review B, 83, 041402(2011).

    [19] Alaee R, Albooyeh M, Yazdi M et al. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications[J]. Physical Review B, 91, 115119(2015).

    [20] Ren Y. Research on the fabrication, mode properties and fluorescence emission mediation of metal-dielectric-metal composite metasurface[D]. Hefei:University of Science and Technology of China, 34-50(2018).

    [21] Palik E D[M]. Handbook of optical constants of solids, 350-357(1985).

    [22] Liu S, Vaskin A, Campione S et al. Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators[J]. Nano Letters, 17, 4297-4303(2017).

    [23] Bharadwaj P, Novotny L. Spectral dependence of single molecule fluorescence enhancement[J]. Optics Express, 15, 14266-14274(2007).

    [24] Magde D, Wong R, Seybold P G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents:improved absolute standards for quantum yields[J]. Photochemistry and Photobiology, 75, 327-334(2007).

    [25] Ford G W, Weber W H. Electromagnetic interactions of molecules with metal surfaces[J]. Physics Reports, 113, 195-287(1984).

    [26] Kinkhabwala A, Yu Z F, Fan S H et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [27] Bauch M, Toma K, Toma M et al. Plasmon-enhanced fluorescence biosensors: a review[J]. Plasmonics, 9, 781-799(2014).

    [28] Rose A, Hoang T B. McGuire F, et al. Control of radiative processes using tunable plasmonic nanopatch antennas[J]. Nano Letters, 14, 4797-4802(2014).

    Han Wang, Haofeng Zang, Yonghua Lu, Pei Wang. Mode Properties and Fluorescence Emission Mediation of Metal-Dielectric-Metal Nanoantenna Array[J]. Acta Optica Sinica, 2020, 40(4): 0426001
    Download Citation