• Opto-Electronic Advances
  • Vol. 6, Issue 7, 230007 (2023)
Chang-Cun Yan1,2,3,†, Zong-Lu Che2,†, Wan-Ying Yang2, Xue-Dong Wang2,*, and Liang-Sheng Liao1,2,*
Author Affiliations
  • 1Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
  • 2Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
  • 3Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • show less
    DOI: 10.29026/oea.2023.230007 Cite this Article
    Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao. Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity[J]. Opto-Electronic Advances, 2023, 6(7): 230007 Copy Citation Text show less
    References

    [1] Y Jiang, YY Liu, X Liu, H Lin, K Gao et al. Organic solid-state lasers: a materials view and future development. Chem Soc Rev, 49, 5885-5944(2020).

    [2] AJC Kuehne, MC Gather. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 116, 12823-12864(2016).

    [3] CC Yan, XD Wang, LS Liao. Thermally activated delayed fluorescent gain materials: harvesting triplet excitons for lasing. Adv Sci, 9, 2200525(2022).

    [4] GQ Wei, XD Wang, LS Liao. Recent advances in 1D organic solid-state lasers. Adv Funct Mater, 29, 1902981(2019).

    [5] JJ Wu, XD Wang, LS Liao. Advances in energy-level systems of organic lasers. Laser Photonics Rev, 16, 2200366(2022).

    [6] Y Wang, JY Yu, YF Mao, J Chen, S Wang et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401-405(2020).

    [7] RM Ma, RF Oulton. Applications of nanolasers. Nat Nanotechnol, 14, 12-22(2019).

    [8] GS Hong, AL Antaris, HJ Dai. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng, 1, 0010(2017).

    [9] MT Hill, MC Gather. Advances in small lasers. Nat Photonics, 8, 908-918(2014).

    [10] RX Yan, D Gargas, PD Yang. Nanowire photonics. Nat Photonics, 3, 569-576(2009).

    [11] YC Wei, SF Wang, Y Hu, LS Liao, DG Chen et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat Photonics, 14, 570-577(2020).

    [12] JV Caspar, EM Kober, BP Sullivan, TJ Meyer. Application of the energy gap law to the decay of charge-transfer excited states. J Am Chem Soc, 104, 630-632(1982).

    [13] JJ Wu, XD Wang, LS Liao. Near-infrared solid-state lasers based on small organic molecules. ACS Photonics, 6, 2590-2599(2019).

    [14] J Gierschner, S Varghese, SY Park. Organic single crystal lasers: a materials view. Adv Opt Mater, 4, 348-364(2016).

    [15] C Wei, MM Gao, FQ Hu, JN Yao, YS Zhao. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv Opt Mater, 4, 1009-1014(2016).

    [16] HY Dong, YH Wei, W Zhang, C Wei, CH Zhang et al. Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J Am Chem Soc, 138, 1118-1121(2016).

    [17] YH Wei, HY Dong, C Wei, W Zhang, YL Yan et al. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal–organic frameworks. Adv Mater, 28, 7424-7429(2016).

    [18] K Wang, ZH Gao, W Zhang, YL Yan, HW Song et al. Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Sci Adv, 5, eaaw2953(2019).

    [19] D Okada, S Azzini, H Nishioka, A Ichimura, H Tsuji et al. π-Electronic co-crystal microcavities with selective vibronic-mode light amplification: toward förster resonance energy transfer lasing. Nano Lett, 18, 4396-4402(2018).

    [20] HT Lin, YX Ma, S Chen, XD Wang. Hierarchical integration of organic core/shell microwires for advanced photonics. Angew Chem Int Ed, 62, e202214214(2023).

    [21] Q Lv, XD Wang, Y Yu, MP Zhuo, M Zheng et al. Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys. Nat Commun, 13, 3099(2022).

    [22] YX Ma, S Chen, HT Lin, SP Zhuo, XD Wang. Organic low-dimensional crystals undergoing twinning deformation. Sci Bull, 67, 1632-1635(2022).

    [23] Y Su, ZF Yao, B Wu, YD Zhao, JY Han et al. Organic polymorph-based alloys for continuous regulation of emission colors. Matter, 5, 1520-1531(2022).

    [24] W Zhang, YL Yan, JM Gu, JN Yao, YS Zhao. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. Angew Chem Int Ed, 54, 7125-7129(2015).

    [25] X Cheng, K Wang, S Huang, HY Zhang, HY Zhang et al. Organic crystals with near-infrared amplified spontaneous emissions based on 2’-hydroxychalcone derivatives: subtle structure modification but great property change. Angew Chem Int Ed, 54, 8369-8373(2015).

    [26] CC Yan, XD Wang, LS Liao. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics, 7, 1355-1366(2020).

    [27] VS Padalkar, S Seki. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev, 45, 169-202(2016).

    [28] JE Kwon, SY Park. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater, 23, 3615-3642(2011).

    [29] P Chou, D McMorrow, TJ Aartsma, M Kasha. The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem, 88, 4596-4599(1984).

    [30] GQ Wei, Y Yu, MP Zhuo, XD Wang, LS Liao. Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens. J Mater Chem C, 8, 11916-11921(2020).

    [31] WY Yang, RC Lai, JJ Wu, YJ Yu, CC Yan et al. Deepening insights into near-infrared excited-state intramolecular proton transfer lasing: the charm of resonance-assisted hydrogen bonds. Adv Funct Mater, 32, 2204129(2022).

    [32] VTN Mai, A Shukla, M Mamada, S Maedera, PE Shaw et al. Low amplified spontaneous emission threshold and efficient electroluminescence from a carbazole derivatized excited-state intramolecular proton transfer dye. ACS Photonics, 5, 4447-4455(2018).

    [33] KY Chen, CC Hsieh, YM Cheng, CH Lai, PT Chou. Extensive spectral tuning of the proton transfer emission from 550 to 675 nm via a rational derivatization of 10-hydroxybenzo[h]quinoline. Chem Commun, 42, 4395-4397(2006).

    [34] XD Wang, Q Liao, XM Lu, H Li, ZZ Xu et al. Shape-engineering of self-assembled organic single microcrystal as optical microresonator for laser applications. Sci Rep, 4, 7011(2014).

    [35] X Cheng, YF Zhang, SH Han, F Li, HY Zhang et al. Multicolor amplified spontaneous emissions based on organic polymorphs that undergo excited-state intramolecular proton transfer. Chem Eur J, 22, 4899-4903(2016).

    [36] ZL Che, CC Yan, XD Wang, LS Liao. Organic near-infrared luminescent materials based on excited state intramolecular proton transfer process. Chin J Chem, 40, 2468-2481(2022).

    [37] XD Wang, Q Liao, H Li, SM Bai, YS Wu et al. Near-infrared lasing from small-molecule organic hemispheres. J Am Chem Soc, 137, 9289-9295(2015).

    [38] XD Wang, ZZ Li, MP Zhuo, YS Wu, S Chen et al. Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater, 27, 1703470(2017).

    [39] XD Wang, ZZ Li, SF Li, H Li, JW Chen et al. Near-infrared organic single-crystal lasers with polymorphism-dependent excited state intramolecular proton transfer. Adv Opt Mater, 5, 1700027(2017).

    [40] JJ Wu, HF Gao, RC Lai, MP Zhuo, JG Feng et al. Near-infrared organic single-crystal nanolaser arrays activated by excited-state intramolecular proton transfer. Matter, 2, 1233-1243(2020).

    [41] D Venkatakrishnarao, YSLV Narayana, MA Mohaiddon, EA Mamonov, N Mitetelo et al. Two-photon luminescence and second-harmonic generation in organic nonlinear surface comprised of self-assembled frustum shaped organic microlasers. Adv Mater, 29, 1605260(2017).

    [42] JJ Wu, MP Zhuo, RC Lai, SN Zou, CC Yan et al. Cascaded excited-state intramolecular proton transfer towards near-infrared organic lasers beyond 850 nm. Angew Chem Int Ed, 60, 9114-9119(2021).

    [43] CC Yan, YP Liu, WY Yang, JJ Wu, XD Wang et al. Excited-state intramolecular proton transfer parent core engineering for six-level system lasing toward 900 nm. Angew Chem Int Ed, 61, e202210422(2022).

    [44] WY Yang, CC Yan, XD Wang, LS Liao. Recent progress on the excited-state multiple proton transfer process in organic molecules. Sci China Chem, 65, 1843-1853(2022).

    [45] R Aoki, R Komatsu, K Goushi, M Mamada, SY Ko et al. Realizing near-infrared laser dyes through a shift in excited-state absorption. Adv Opt Mater, 9, 2001947(2021).

    [46] CC Yan, JJ Wu, WY Yang, S Chen, Q Lv et al. Precise synthesis of multilevel branched organic microwires for optical signal processing in the near infrared region. Sci China Mater, 65, 1020-1027(2022).

    [47] WY Mao, J Tang, LQ Dai, XY He, J Li et al. A general strategy to design highly fluorogenic far-red and near-infrared tetrazine bioorthogonal probes. Angew Chem Int Ed, 60, 2393-2397(2021).

    [48] SJ Lim, J Seo, SY Park. Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. J Am Chem Soc, 128, 14542-14547(2006).

    [49] ZY Zhang, YA Chen, WY Hung, WF Tang, YH Hsu et al. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5, 4-d]thiazole ESIPT system. Chem Mater, 28, 8815-8824(2016).

    [50] TEA Frizon, CAM Salla, F Grillo, FS Rodembusch, VS Câmara et al. ESIPT-based benzazole-pyromellitic diimide derivatives. A thermal, electrochemical, and photochemical investigation. Spectrochim Acta A Mol Biomol Spectrosc, 288, 122050(2023).

    [51] CY Peng, JY Shen, YT Chen, PJ Wu, WY Hung et al. Optically triggered stepwise double-proton transfer in an intramolecular proton relay: a case study of 1, 8-dihydroxy-2-naphthaldehyde. J Am Chem Soc, 137, 14349-14357(2015).

    [52] PM Vérité, CA Guido, D Jacquemin. First-principles investigation of the double ESIPT process in a thiophene-based dye. Phys Chem Chem Phys, 21, 2307-2317(2019).

    [53] T Wróblewski, D Ushakou. Stepwise excited-state double proton transfer and fluorescence decay analysis. J Fluoresc, 33, 103-111(2023).

    [54] GQ Wei, XD Wang, LS Liao. Recent advances in organic whispering-gallery mode lasers. Laser Photonics Rev, 14, 2000257(2020).

    [55] D Venkatakrishnarao, EA Mamonov, TV Murzina, R Chandrasekar. Advanced organic and polymer whispering-gallery-mode microresonators for enhanced nonlinear optical light. Adv Optical Mater, 6, 1800343(2018).

    [56] XD Wang, Q Liao, QH Kong, Y Zhang, ZZ Xu et al. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks. Angew Chem Int Ed, 53, 5863-5867(2014).

    [57] T Matsushima, S Yoshida, K Inada, Y Esaki, T Fukunaga et al. Degradation mechanism and stability improvement strategy for an organic laser gain material 4, 4'-Bis[(N-carbazole)styryl]biphenyl (BSBCz). Adv Funct Mater, 29, 1807148(2019).

    Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao. Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity[J]. Opto-Electronic Advances, 2023, 6(7): 230007
    Download Citation