• Acta Optica Sinica
  • Vol. 36, Issue 9, 906004 (2016)
Li Yongqian*, An Qi, Li Xiaojuan, He Yujun, and Zhang Lixin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0906004 Cite this Article Set citation alerts
    Li Yongqian, An Qi, Li Xiaojuan, He Yujun, Zhang Lixin. Optical Fiber Sensing Technology Based on Loss Vector Brillouin Optical Time Domain Analysis[J]. Acta Optica Sinica, 2016, 36(9): 906004 Copy Citation Text show less
    References

    [1] Bi Weihong, Yang Xipeng, Li Jingyang, et al. Forward and backward Raman amplification of Brillouin scattering signal in Brillouin optical time domain reflectometer system[J]. Chinese J Lasers, 2014, 41(12): 1205007.

    [2] Liu Wenzhe, Zhang Yanjun, Fu Xinghu, et al. A model research of BOTDR signal processing based on G-Simplex coding[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090601.

    [3] Wang Xue, Lu Yuangang, Zhang Xuping, et al. Calculation method of strain and temperature coefficients for fibers with multimode acoustic waveguide structure[J]. Acta Optica Sinica, 2015, 35(6): 0606003.

    [4] Li Yongqian, Li Xiaojuan, An Qi. New method to improve the performance of Brillouin optical time domain reflectometer system[J]. Acta Optica Sinica, 2015, 35(1): 0106003.

    [5] Li Yongqian, Zhao Xu, Zhao Lijuan, et al. Brillouin scattering parameters of different modes in multimode optical fibers[J]. Acta Photonica Sinica, 2015, 44(3): 0319002.

    [6] Angulo-Vinuesa X, Martin-Lopez S, Corredera P, et al. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km[J]. Opt Express, 2012, 20(11): 12147-12154.

    [7] Soto M A, Taki M, Bolognini G, et al. Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification[J]. IEEE Photon Technol Lett, 2012, 24(20): 1823-1826.

    [8] Robert W B. Nonlinear optics[M]. New York: Academic Press, 2007: 436-453.

    [9] Govind P A. Nonlinear fiber optics[M]. New York: Academic Press, 2001: 359-364.

    [10] Dossou M, Bacquet D, Szriftgiser P. Vector Brillouin optical time-domain analyzer for high-order acoustic modes[J]. Opt Lett, 2010, 35(22): 3850-3852.

    [11] Zornoza A, Sagues M, Loayssa A. Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA[J]. J Lightwave Technol, 2012, 30(8): 1066-1072.

    [12] Tu X B, Sun Q, Chen W, et al. Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm[J]. IEEE Photonics J, 2014, 6(2): 6800908.

    [13] Naruse H, Tateda M, Ohno H, et al. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors[J]. Appl Opt, 2002, 41(34): 7212-7217.

    [14] Kurashima T, Horiguchi T, Ohno H, et al. Strain and temperature characteristics of Brillouin spectra in optical fibers for distributed sensing techniques[C]. 24th European Conference on Optical Communication, 1998, 1: 149-150.

    [15] Song Muping. The technique of Brillouin scattering distributed optical fiber sensing based on microwave electrooptical modulation[J]. Acta Optica Sinica, 2004, 24(8): 1111-1114.

    [16] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. J Lightwave Technol, 1997, 15(10): 1842-1851.

    Li Yongqian, An Qi, Li Xiaojuan, He Yujun, Zhang Lixin. Optical Fiber Sensing Technology Based on Loss Vector Brillouin Optical Time Domain Analysis[J]. Acta Optica Sinica, 2016, 36(9): 906004
    Download Citation