• Journal of Semiconductors
  • Vol. 40, Issue 9, 091101 (2019)
Linwang Wang
Author Affiliations
  • Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  • show less
    DOI: 10.1088/1674-4926/40/9/091101 Cite this Article
    Linwang Wang. Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 091101 Copy Citation Text show less

    Abstract

    In this short review, we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors. We briefly review the debates and connections of using different formalisms to calculate the multi-phonon processes. We connect Dr. Huang’s formula with Marcus theory formula in the high temperature limit, and point out that Huang’s formula provide an analytical expression for the phonon induced electron coupling constant in the Marcus theory formula. We also discussed the validity of 1D formula in dealing with the electron transition processes, and practical ways to correct the anharmonic effects.
    $ H(r,R) \psi_i(r,R) = \epsilon_i(R) \psi_i(r,R) . $(1)

    View in Article

    $ \bigg[ \sum\limits_R {-{1\over 2 M_{ R}} \nabla_{ R}^2 + \epsilon_i(R)} \bigg] \phi_{i,n}(R) = E_{i,n} \phi_{i,n}(R). $(2)

    View in Article

    $ C(i,j,R) = {{\rm d} F_{R,\alpha} \over {\rm d} \alpha } . $(3)

    View in Article

    $ {\hat P} \psi_k = \alpha \int [\psi_i(r) \psi_j^*(r')+\psi_j(r) \psi_i^*(r')] f(|r-r'|) \psi_k(r'){\rm d}^3r', $(4)

    View in Article

    $ \delta(\omega) = {1\over 2{\text{π}}} \int_{-\infty}^{\infty} {\rm e}^{i \omega t} {\rm d}t . $(5)

    View in Article

    $ W_{ij} = {2{\text{π}}}\sum\limits_{k_1,k_2} C_{i,j}^{k_1} C_{i,j}^{k_2} A_{ij}^{k_1,k_2} , $(6)

    View in Article

    $ A_{ij}^{k_1,k_2} = {1\over 2{\text{π}} Z} \int_{-\infty}^{\infty} \chi_{ij}^{k_1,k_2}(t,T) {\rm e}^{-i (E_i-E_j) t} {\rm d}t, $(7)

    View in Article

    $ \begin{split} W_{ij} =\; & {2{\text{π}}}\!\!\int_{-\infty}^{\infty}\!\!\bigg\{ \Big[\!\sum\limits_k \! C_{i,j}^k \Delta Q_{ij}^k \big( {\rm{cos}}(\omega_k t) + i{\rm{coth}}(\beta \omega_k/2) {\rm{sin}}(\omega_k t)\big)\!\Big]^2\\ & {+\, {1\over2} \sum\limits_k |C_{i,j}^k|^2 {1\over \omega_k} \big( {\rm{coth}}(\beta \omega_k/2) {\rm{cos}}(\omega_k t)+i {\rm{sin}}(\omega_k t)\big) \bigg\} }\\ & \times {1\over 2{\text{π}}} {\rm{exp}}\big[-i t (E_j-E_i) - \sum\limits_s {\omega_s\over2} |\text{Δ} Q_{ij}^s|^2\big( {\rm{coth}}(\beta \omega_s/2)\\ & \times(1-{\rm{cos}}(\omega_s t)-i {\rm{sin}}(\omega_s t)\big) \big] {\rm d}t. \end{split}$(8)

    View in Article

    $ W_{ij} = \left({{\text{π}} kT\over S \bar \omega}\right)^{1/2} \left( \sum\limits_k {1\over \omega_k^2} |C_{i,j}^k|^2\right) {\rm{exp}}\left(-{(E_i-E_j -S \bar \omega)^2\over 4 kT S \bar \omega}\right) . $(9)

    View in Article

    $ W_{ij} = \left({{\text{π}} kT\over \lambda}\right)^{1/2} {1\over kT} |V_{\rm c}|^2 {\rm{exp}}\left(-{(E_i-E_j-\lambda)^2\over 4 \lambda kT}\right) . $(10)

    View in Article

    Linwang Wang. Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors[J]. Journal of Semiconductors, 2019, 40(9): 091101
    Download Citation