• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1700001 (2022)
Qianwen Ying1、2、3, Hongliang Zhang1、2、3, and Zhichao Ruan1、2、3、4、*
Author Affiliations
  • 1Interdisciplinary Center of Quantum Information, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 2State Key Laboratory of Modern Optical Instrumentation, Hangzhou 310027, Zhejiang , China
  • 3Zhejiang Province Key Laboratory of Quantum Technology and Device, Hangzhou 310027, Zhejiang , China
  • 4College of Optical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1700001 Cite this Article Set citation alerts
    Qianwen Ying, Hongliang Zhang, Zhichao Ruan. Progress and Application of Spatial Modulation Spectroscopy Technique for Detection of Extinction Cross Section of Single Nanoparticle[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1700001 Copy Citation Text show less
    References

    [1] Moriarty P. Nanostructured materials[J]. Reports on Progress in Physics, 64, 297-381(2001).

    [2] Kreibig U, Vollmer M[M]. Optical properties of metal clusters(1995).

    [3] Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chemical Reviews, 111, 3858-3887(2011).

    [4] Zijlstra P, Orrit M. Single metal nanoparticles: optical detection, spectroscopy and applications[J]. Reports on Progress in Physics, 74, 106401(2011).

    [5] Husnik M, Klein M W, Feth N et al. Absolute extinction cross-section of individual magnetic split-ring resonators[J]. Nature Photonics, 2, 614-617(2008).

    [6] Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 58, 267-297(2007).

    [7] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition[J]. The Journal of Physical Chemistry B, 110, 19220-19225(2006).

    [8] Krenn J R, Dereux A, Weeber J C et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles[J]. Physical Review Letters, 82, 2590-2593(1999).

    [9] Rang M, Jones A C, Zhou F et al. Optical near-field mapping of plasmonic nanoprisms[J]. Nano Letters, 8, 3357-3363(2008).

    [10] Berciaud S, Cognet L, Lounis B. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes[J]. Physical Review Letters, 101, 077402(2008).

    [11] Schultz S, Smith D R, Mock J J et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 996-1001(2000).

    [12] Hu M, Novo C, Funston A et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance[J]. Journal of Materials Chemistry, 18, 1949-1960(2008).

    [13] Anderson L J E, Mayer K M, Fraleigh R D et al. Quantitative measurements of individual gold nanoparticle scattering cross sections[J]. The Journal of Physical Chemistry C, 114, 11127-11132(2010).

    [14] Dorfmüller J, Vogelgesang R, Khunsin W et al. Plasmonic nanowire antennas: experiment, simulation, and theory[J]. Nano Letters, 10, 3596-3603(2010).

    [15] Boyer D, Tamarat P, Maali A et al. Photothermal imaging of nanometer-sized metal particles among scatterers[J]. Science, 297, 1160-1163(2002).

    [16] Berciaud S, Cognet L, Blab G A et al. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals[J]. Physical Review Letters, 93, 257402(2004).

    [17] Berciaud S, Lasne D, Blab G A et al. Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment[J]. Physical Review B, 73, 045424(2006).

    [18] Gaiduk A, Ruijgrok P V, Yorulmaz M et al. Detection limits in photothermal microscopy[J]. Chemical Science, 1, 343-350(2010).

    [19] Arbouet A, Christofilos D, del Fatti N et al. Direct measurement of the single-metal-cluster optical absorption[J]. Physical Review Letters, 93, 127401(2004).

    [20] Billaud P, Huntzinger J R, Cottancin E et al. Optical extinction spectroscopy of single silver nanoparticles[J]. The European Physical Journal D, 43, 271-274(2007).

    [21] Billaud P, Marhaba S, Cottancin E et al. Correlation between the extinction spectrum of a single metal nanoparticle and its electron microscopy image[J]. The Journal of Physical Chemistry C, 112, 978-982(2008).

    [22] Alivisatos P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 22, 47-52(2004).

    [23] McFarland A D, van Duyne R P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano Letters, 3, 1057-1062(2003).

    [24] Stoll T, Maioli P, Crut A et al. Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles[J]. The European Physical Journal B, 87, 260(2014).

    [25] Crut A, Maioli P, del Fatti N et al. Optical absorption and scattering spectroscopies of single nano-objects[J]. Chemical Society Reviews, 43, 3921-3956(2014).

    [26] Andrade L H F, Laraoui A, Vomir M et al. Damped precession of the magnetization vector of superparamagnetic nanoparticles excited by femtosecond optical pulses[J]. Physical Review Letters, 97, 127401(2006).

    [27] Crut A, Maioli P, del Fatti N et al. Acoustic vibrations of metal nano-objects: time-domain investigations[J]. Physics Reports, 549, 1-43(2015).

    [28] Lindfors K, Kalkbrenner T, Stoller P et al. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy[J]. Physical Review Letters, 93, 037401(2004).

    [29] Bohren C F, Huffman D R[M]. Absorption and scattering of light by small particles(2008).

    [30] Tcherniak A, Ha J W, Dominguez-Medina S et al. Probing a century old prediction one plasmonic particle at a time[J]. Nano Letters, 10, 1398-1404(2010).

    [31] van Dijk M A, Tchebotareva A L, Orrit M et al. Absorption and scattering microscopy of single metal nanoparticles[J]. Physical Chemistry Chemical Physics: PCCP, 8, 3486-3495(2006).

    [32] Bréchignac C, Houdy P, Lahmani M[M]. Nanomaterials and nanochemistry(2008).

    [33] Muskens O L, Billaud P, Broyer M et al. Optical extinction spectrum of a single metal nanoparticle: quantitative characterization of a particle and of its local environment[J]. Physical Review B, 78, 205410(2008).

    [34] Christofilos D, Blancon J C, Arvanitidis J et al. Optical imaging and absolute absorption cross section measurement of individual nano-objects on opaque substrates: single-wall carbon nanotubes on silicon[J]. The Journal of Physical Chemistry Letters, 3, 1176-1181(2012).

    [35] Blancon J C, Paillet M, Tran H N et al. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes[J]. Nature Communications, 4, 2542(2013).

    [36] Ying Q W, Zhang J H, Zhang H L et al. Highly stable measurement for nanoparticle extinction cross section by analyzing aperture-edge blurriness[J]. Optics Express, 29, 16323-16333(2021).

    [37] Devadas M S, Li Z M, Major T A et al. Detection of single gold nanoparticles using spatial modulation spectroscopy implemented with a galvo-scanning mirror system[J]. Applied Optics, 52, 7806-7811(2013).

    [38] Fairbairn N, Light R A, Carter R et al. Spatial modulation microscopy for real-time imaging of plasmonic nanoparticles and cells[J]. Optics Letters, 37, 3015-3017(2012).

    [39] Oudjedi L, Parra-Vasquez A N G, Godin A G et al. Metrological investigation of the (6, 5) carbon nanotube absorption cross section[J]. The Journal of Physical Chemistry Letters, 4, 1460-1464(2013).

    [40] Muskens O, Christofilos D, Fatti N D et al. Optical response of a single noble metal nanoparticle[J]. Journal of Optics A: Pure and Applied Optics, 8, S264-S272(2006).

    [41] Steinbach G, Pomozi I, Zsiros O et al. Imaging anisotropy using differential polarization laser scanning confocal microscopy[J]. Acta Histochemica, 111, 317-326(2009).

    [42] Carey C R, LeBel T, Crisostomo D et al. Imaging and absolute extinction cross-section measurements of nanorods and nanowires through polarization modulation microscopy[J]. The Journal of Physical Chemistry C, 114, 16029-16036(2010).

    [43] Lombardi A, Loumaigne M, Crut A et al. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods[J]. Langmuir, 28, 9027-9033(2012).

    [44] Lilley G, Unterrainer K. Rotating polarization spectroscopy for single nano-antenna characterization[J]. Optics Express, 21, 30903-30910(2013).

    [45] del Fatti N, Vallée F. Ultrafast optical nonlinear properties of metal nanoparticles[J]. Applied Physics B, 73, 383-390(2001).

    [46] Voisin C, Christofilos D, Loukakos P A et al. Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles[J]. Physical Review B, 69, 195416(2004).

    [47] Muskens O L, del Fatti N, Vallée F. Femtosecond response of a single metal nanoparticle[J]. Nano Letters, 6, 552-556(2006).

    [48] Baida H, Crut A, Maioli P et al. Optical detection and femtosecond spectroscopy of a single nanoparticle[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2, 035011(2011).

    [49] Baida H, Mongin D, Christofilos D et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance[J]. Physical Review Letters, 107, 057402(2011).

    [50] del Fatti N, Voisin C, Achermann M et al. Nonequilibrium electron dynamics in noble metals[J]. Physical Review B, 61, 16956-16966(2000).

    [51] Aeschlimann M, Bauer M, Bayer D et al. Adaptive subwavelength control of nano-optical fields[J]. Nature, 446, 301-304(2007).

    [52] MacDonald K F, Sámson Z L, Stockman M I et al. Ultrafast active plasmonics[J]. Nature Photonics, 3, 55-58(2009).

    [53] Voisin C, Christofilos D, Del F N et al. Size-dependent electron-electron interactions in metal nanoparticles[J]. Physical Review Letters, 85, 2200-2203(2000).

    [54] Arbouet A, Voisin C, Christofilos D et al. Electron-phonon scattering in metal clusters[J]. Physical Review Letters, 90, 177401(2003).

    [55] del Fatti N, Flytzanis C, Vallée F. Ultrafast induced electron-surface scattering in a confined metallic system[J]. Applied Physics B, 68, 433-437(1999).

    [56] Juvé V, Crut A, Maioli P et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles[J]. Nano Letters, 10, 1853-1858(2010).

    [57] Hodak J H, Henglein A, Hartland G V. Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes[J]. The Journal of Chemical Physics, 111, 8613-8621(1999).

    [58] Rouxel R, Diego M, Medeghini F et al. Ultrafast thermo-optical dynamics of a single metal nano-object[J]. The Journal of Physical Chemistry C, 124, 15625-15633(2020).

    [59] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat[J]. Laser & Photonics Reviews, 7, 171-187(2013).

    [60] Vella A, Shinde D, Houard J et al. Optothermal response of a single silicon nanotip[J]. Physical Review B, 97, 075409(2018).

    [61] Bergamini L, Chen B G, Traviss D et al. Single-nanoantenna driven nanoscale control of the VO2 insulator to metal transition[J]. Nanophotonics, 10, 3745-3758(2021).

    [62] Kollmann H, Esmann M, Witt J et al. Fourier-transform spatial modulation spectroscopy of single gold nanorods[J]. Nanophotonics, 7, 715-726(2018).

    [63] Husnik M, Linden S, Diehl R et al. Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas[J]. Physical Review Letters, 109, 233902(2012).

    [64] Li C, Krachmalnicoff V, Bouchon P et al. Near-field and far-field thermal emission of an individual patch nanoantenna[J]. Physical Review Letters, 121, 243901(2018).

    [65] Vasa P, Pomraenke R, Cirmi G et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures[J]. ACS Nano, 4, 7559-7565(2010).

    [66] Savasta S, Saija R, Ridolfo A et al. Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna[J]. ACS Nano, 4, 6369-6376(2010).

    [67] Fofang N T, Park T H, Neumann O et al. Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes[J]. Nano Letters, 8, 3481-3487(2008).

    [68] Weitemeyer S, Husnik M, Wegener M. Observation of unusual absorption and scattering cross-section line shapes of individual optical double-wire antennas[J]. Applied Physics Letters, 104, 031111(2014).

    [69] Subbarao M, Gurumoorthy N. Depth recovery from blurred edges[C], 498-503(1988).

    [70] Subbarao M. On the depth information in the point spread function of a defocused optical system[J]. Computer Vision Laboratory, Department of Electrical Engineering State University of New York, Stony Brook, NY, 11794-2350(1990). https://www.researchgate.net/profile/M-Subbarao-3/publication/2612507

    [71] Hagara M, Kulla P. Edge detection with sub-pixel accuracy based on approximation of edge with erf function[J]. Radioengineering, 20, 516-524(2011).

    [72] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. ChemInform, 34, 200316243(2003).

    [73] Liz-Marzán L M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 22, 32-41(2006).

    [74] Crut A, Maioli P, Vallée F et al. Linear and ultrafast nonlinear plasmonics of single nano-objects[J]. Journal of Physics: Condensed Matter: an Institute of Physics Journal, 29, 123002(2017).

    [75] Kawabata A, Kubo R. Electronic properties of fine metallic particles. II. plasma resonance absorption[J]. Journal of the Physical Society of Japan, 21, 1765-1772(1966).

    [76] Lermé J, Baida H, Bonnet C et al. Size dependence of the surface plasmon resonance damping in metal nanospheres[J]. The Journal of Physical Chemistry Letters, 1, 2922-2928(2010).

    [77] Knoesel E, Hotzel A, Wolf M. Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects[J]. Physical Review B, 57, 12812-12824(1998).

    [78] Hache F, Ricard D, Flytzanis C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects[J]. Journal of the Optical Society of America B, 3, 1647-1655(1986).

    [79] Baida H, Billaud P, Marhaba S et al. Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO2 nanoparticles[J]. Nano Letters, 9, 3463-3469(2009).

    [80] Juvé V, Cardinal M F, Lombardi A et al. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods[J]. Nano Letters, 13, 2234-2240(2013).

    [81] Muskens O L, Bachelier G, del Fatti N et al. Quantitative absorption spectroscopy of a single gold nanorod[J]. The Journal of Physical Chemistry C, 112, 8917-8921(2008).

    [82] Muskens O L, del Fatti N, Vallée F et al. Single metal nanoparticle absorption spectroscopy and optical characterization[J]. Applied Physics Letters, 88, 063109(2006).

    [83] Grillet N, Manchon D, Cottancin E et al. Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes[J]. The Journal of Physical Chemistry C, 117, 2274-2282(2013).

    [84] Ramade J, Cottancin E, Lebeault M A et al. Environmental plasmonic spectroscopy of silver-iron nanoparticles: chemical ordering under oxidizing and reducing conditions[J]. The Journal of Physical Chemistry C, 123, 15693-15706(2019).

    [85] Zhang Q Q, Chen B, Xing L Z. Finite element analysis of photothermal properties of SiO2@Au core-shell nanoparticle[J]. Chinese Journal of Lasers, 48, 0907001(2021).

    [86] Wang Y S, Zilli A, Sztranyovszky Z et al. Quantitative optical microspectroscopy, electron microscopy, and modelling of individual silver nanocubes reveal surface compositional changes at the nanoscale[J]. Nanoscale Advances, 2, 2485-2496(2020).

    [87] Jin R, Cao Y W, Mirkin C A et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science, 294, 1901-1903(2001).

    [88] Callegari A, Tonti D, Chergui M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape[J]. Nano Letters, 3, 1565-1568(2003).

    [89] Ohko Y, Tatsuma T, Fujii T et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles[J]. Nature Materials, 2, 29-31(2003).

    [90] Naoi K, Ohko Y, Tatsuma T. TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior[J]. Journal of the American Chemical Society, 126, 3664-3668(2004).

    [91] Bois L, Chassagneux F, Parola S et al. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO-PPO-PEO[J]. Journal of Solid State Chemistry, 182, 1700-1707(2009).

    [92] Glover R D, Miller J M, Hutchison J E. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment[J]. ACS Nano, 5, 8950-8957(2011).

    [93] Davletshin Y R, Lombardi A, Cardinal M F et al. A quantitative study of the environmental effects on the optical response of gold nanorods[J]. ACS Nano, 6, 8183-8193(2012).

    [94] Sönnichsen C, Franzl T, Wilk T et al. Drastic reduction of plasmon damping in gold nanorods[J]. Physical Review Letters, 88, 077402(2002).

    [95] Berciaud S, Cognet L, Tamarat P et al. Observation of intrinsic size effects in the optical response of individual gold nanoparticles[J]. Nano Letters, 5, 515-518(2005).

    [96] Chen H J, Kou X S, Yang Z et al. Shape- and size-dependent refractive index sensitivity of gold nanoparticles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 24, 5233-5237(2008).

    [97] Chen H J, Shao L, Woo K C et al. Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength[J]. The Journal of Physical Chemistry C, 113, 17691-17697(2009).

    [98] Raschke G, Kowarik S, Franzl T et al. Biomolecular recognition based on single gold nanoparticle light scattering[J]. Nano Letters, 3, 935-938(2003).

    [99] Medeghini F, Hettich M, Rouxel R et al. High-pressure effect on the optical extinction of a single gold nanoparticle[J]. ACS Nano, 12, 10310-10316(2018).

    [100] Rye J M, Bonnet C, Lerouge F et al. Single gold bipyramids on a silanized substrate as robust plasmonic sensors for liquid environments[J]. Nanoscale, 10, 16094-16101(2018).

    [101] Liu M Z, Guyot-Sionnest P, Lee T W et al. Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations[J]. Physical Review B, 76, 235428(2007).

    [102] Peters S M E, Verheijen M A, Prins M W J et al. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing[J]. Nanotechnology, 27, 024001(2016).

    [103] Abulaiti R, Tuersun P, Zheng Y X et al. Analysis and optimization of Au nanoshell photothermal properties[J]. Laser & Optoelectronics Progress, 59, 0725001(2022).

    [104] Pellarin M, Ramade J, Rye J M et al. Fano transparency in rounded nanocube dimers induced by gap plasmon coupling[J]. ACS Nano, 10, 11266-11279(2016).

    [105] Marhaba S, Bachelier G, Bonnet C et al. Surface plasmon resonance of single gold nanodimers near the conductive contact limit[J]. The Journal of Physical Chemistry C, 113, 4349-4356(2009).

    [106] Jain P K, Huang W Y, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation[J]. Nano Letters, 7, 2080-2088(2007).

    [107] Reinhard B M, Siu M, Agarwal H et al. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles[J]. Nano Letters, 5, 2246-2252(2005).

    [108] Lombardi A, Grzelczak M P, Crut A et al. Optical response of individual Au-Ag@SiO2 heterodimers[J]. ACS Nano, 7, 2522-2531(2013).

    [109] Sheikholeslami S, Jun Y W, Jain P K et al. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer[J]. Nano Letters, 10, 2655-2660(2010).

    [110] Sönnichsen C, Reinhard B M, Liphardt J et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nature Biotechnology, 23, 741-745(2005).

    [111] Bachelier G, Russier-Antoine I, Benichou E et al. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles[J]. Physical Review Letters, 101, 197401(2008).

    [112] Reinhard B M, Sheikholeslami S, Mastroianni A et al. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 2667-2672(2007).

    [113] Jun Y W, Sheikholeslami S, Hostetter D R et al. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 17735-17740(2009).

    [114] Shi L, Jing C, Ma D W et al. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction[J]. Angewandte Chemie International Edition, 52, 6011-6014(2013).

    Qianwen Ying, Hongliang Zhang, Zhichao Ruan. Progress and Application of Spatial Modulation Spectroscopy Technique for Detection of Extinction Cross Section of Single Nanoparticle[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1700001
    Download Citation