• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 1, 25 (2021)
Xing SHEN1、2、*, Lingran KONG1、2, Ruizong LI1、2, Dongfang ZHANG1、3, Tianyou GAO1、3, and Kaijun JIANG1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.01.004 Cite this Article
    SHEN Xing, KONG Lingran, LI Ruizong, ZHANG Dongfang, GAO Tianyou, JIANG Kaijun. Numerical analysis of cold-atom spin texture manipulated by Laguerre-Gaussian laser beams[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 25 Copy Citation Text show less
    References

    [1] Kawaguchi Y, Ueda M. Spinor Bose-Einstein condensates[J]. Physics Reports, 2012, 520(5): 253-381.

    [2] Stamper-Kurn D M, Ueda M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics[J]. Reviews of Modern Physics, 2013, 85(3): 1191-1244.

    [3] Ray M W, Ruokokoski E, Kandel S, et al. Observation of Dirac monopoles in a synthetic magnetic field[J]. Nature, 2014, 505(7485): 657-660.

    [4] Lee W, Gheorghe A H, Tiurev K, et al. Synthetic electromagnetic knot in a three-dimensional Skyrmion[J]. Science Advances, 2018, 4(3): eaa03820.

    [5] Hall D S, Ray M W, Tiurev K, et al. Tying quantum knots[J]. Nature Physics, 2016, 12(5): 478-483.

    [6] Leanhardt A E, Shin Y, Kielpinski D, et al. Coreless vortex formation in a spinor Bose-Einstein condensate[J]. Physical Review Letters, 2003, 90(14): 140403.

    [7] Choi J, Kwon W J, Shin Y. Observation of topologically stable 2D Skyrmions in an antiferromagnetic spinor Bose-Einstein condensate[J]. Physical Review Letters, 2012, 108(3): 035301.

    [8] Ke X, Zhao J. Analysis on characteristic of Laguerre-Gaussian beams with topological charges of arithmetic progression[J]. Optik, 2019, 183: 302-310.

    [9] Leslie L S, Hansen A, Wright K C, et al. Creation and detection of Skyrmions in a Bose-Einstein condensate[J]. Physical Review Letters, 2009, 103(25): 250401.

    [10] Wright K C, Leslie L S, Bigelow N P. Optical control of the internal and external angular momentum of a Bose-Einstein condensate[J]. Physical Review A, 2008, 77(4): 041601.

    [11] Li R Z, Gao T Y, Zhang D F, et al. Expansion dynamics of a spherical Bose-Einstein condensate[J]. Chinese Physics B, 2019, 28(10): 106701.

    [12] DeMarco M, Pu H. Angular spin-orbit coupling in cold atoms[J]. Physical Review A, 2015, 91(3): 033630.

    [13] Niffenegger R J. Experiments with Synthetic Spin-Orbit Coupling and Spin Transport in Bose-Einstein Condensates[D]. Purdue University, 2015: 41-45.

    [14] Zhang Y H, Wang X M, Chen X Q. Number Calculation Method and Algorithm[M]. Beijing: Science Press, 2006: 153-157.

    [15] Wright K C, Leslie L S, Bigelow N P. Raman coupling of Zeeman sublevels in an alkali-metal Bose-Einstein condensate[J]. Physical Review A, 2008, 78(5): 053412.

    [16] Choi J, Kwon W J, Lee M, et al. Corrigendum: Imprinting Skyrmion spin textures in spinor Bose-Einstein condensates[J]. New Journal of Physics, 2015, 17(6): 069501.

    [17] Huang L H, Wang P J, Fu Z K, et al. Raman coupling strength in spin-orbit couped Bose-Einstein condensate[J]. Acta Optica Sinica, 2014, 34(7): 0727002.

    CLP Journals

    [1] FAN Haihao, ZHU Liuhao, TAI Yuping, LI Xinzhong. Orbital angular momentum of higher-order diffraction beams[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 127

    SHEN Xing, KONG Lingran, LI Ruizong, ZHANG Dongfang, GAO Tianyou, JIANG Kaijun. Numerical analysis of cold-atom spin texture manipulated by Laguerre-Gaussian laser beams[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 25
    Download Citation