• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802018 (2021)
Genwang Wang1、2, Yanchao Guan1、2, Yang Wang1、2, Ye Ding1、2、**, and Lijun Yang1、2、*
Author Affiliations
  • 1Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 2School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/CJL202148.0802018 Cite this Article Set citation alerts
    Genwang Wang, Yanchao Guan, Yang Wang, Ye Ding, Lijun Yang. Recent Progress in Research and Application of Nano-Manipulation Technologies[J]. Chinese Journal of Lasers, 2021, 48(8): 0802018 Copy Citation Text show less
    References

    [1] Seth S, Samanta A. Photoluminescence of zero-dimensional perovskites and perovskite-related materials[J]. The Journal of Physical Chemistry Letters, 9, 176-183(2018). http://europepmc.org/abstract/MED/29240443

    [2] Gong S, Cheng W L. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials, 3, 1600314(2017).

    [3] Cui J L, Cheng Y, Zhang J W et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 9, 476(2019).

    [4] Lu X W, Yang L J, Yang Z. Photothermal sensing of nano-devices made of graphene materials[J]. Sensors, 20, 3671(2020).

    [5] Wang G W, Hou C J, Long H et al. Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials[J]. Acta Physico-Chimica Sinica, 35, 1319-1340(2019).

    [6] Castellanos-Gomez A, Roldán R, Cappelluti E et al. Local strain engineering in atomically thin MoS2[J]. Nano Letters, 13, 5361-5366(2013). http://www.ncbi.nlm.nih.gov/pubmed/24083520

    [7] D'Orlando A, Bayle M, Louarn G et al. AFM-nano manipulation of plasmonic molecules used as “nano-lens” to enhance Raman of individual nano-objects[J]. Materials, 12, 1372(2019).

    [8] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 344, 524-526(1990).

    [9] Jiang C C, Lu H J, Zhang H T et al. Recent advances on in situ SEM mechanical and electrical characterization of low-dimensional nanomaterials[J]. Scanning, 2017, 1985149(2017). http://www.ncbi.nlm.nih.gov/pubmed/29209445

    [10] Ono M, Kuramochi E, Zhang G Q et al. Nanowire-nanoantenna coupled system fabricated by nanomanipulation[J]. Optics Express, 24, 8647-8659(2016). http://www.ncbi.nlm.nih.gov/pubmed/27137300

    [11] Ratchford D, Shafiei F, Kim S et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 11, 1049-1054(2011).

    [12] Wang H P, Shi Q, Nakajima M et al. Rail-guided multi-robot system for 3D cellular hydrogel assembly with coordinated nanomanipulation[J]. International Journal of Advanced Robotic Systems, 11, 121(2014). http://www.researchgate.net/publication/271519535_Rail-guided_Multi-robot_System_for_3D_Cellular_Hydrogel_Assembly_with_Coordinated_Nanomanipulation

    [13] Shi C, Luu D K, Yang Q et al. Recent advances in nanorobotic manipulation inside scanning electron microscopes[J]. Microsystems & Nanoengineering, 2, 16024(2016). http://www.nature.com/articles/micronano201624

    [14] Xu W N, Qin Z, Chen C T et al. Ultrathin thermoresponsive self-folding 3D graphene[J]. Science Advances, 3, e1701084(2017).

    [15] Schaefer D M, Reifenberger R, Patil A et al. Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope[J]. Applied Physics Letters, 66, 1012-1014(1995). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4886124

    [16] Junno T, Deppert K, Montelius L et al. Controlled manipulation of nanoparticles with an atomic force microscope[J]. Applied Physics Letters, 66, 3627-3629(1995).

    [17] Ramachandran T R, Baur C, Bugacov A et al. Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope[J]. Nanotechnology, 9, 237-245(1998). http://adsabs.harvard.edu/abs/1998Nanot...9..237R

    [18] Whitman L J, Stroscio J A, Dragoset R A et al. Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope[J]. Science, 251, 1206-1210(1991).

    [19] Avouris P. Manipulation of matter at the atomic and molecular levels[J]. Accounts of Chemical Research, 28, 95-102(1995).

    [20] Liu B H. Basic research on integrated nanomanipulation using fiber probe-based near-field optical tweezers and AFM[D]. Harbin: Harbin Institute of Technology, 7-8(2011).

    [21] Kim S, Ratchford D C, Li X Q. Atomic force microscope nanomanipulation with simultaneous visual guidance[J]. ACS Nano, 3, 2989-2994(2009). http://pubs.acs.org/doi/10.1021/nn900606s

    [22] Li G Y, Xi N, Yu M M et al. Development of augmented reality system for AFM-based nanomanipulation[J]. IEEE/ASME Transactions on Mechatronics, 9, 358-365(2004). http://ieeexplore.ieee.org/document/1306449/

    [23] Xie H, Haliyo D S, Régnier S. Parallel imaging/manipulation force microscopy[J]. Applied Physics Letters, 94, 153106(2009). http://scitation.aip.org/content/aip/journal/apl/94/15/10.1063/1.3119686

    [24] Xie H, Régnier S. High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy[J]. IEEE Transactions on Nanotechnology, 11, 21-33(2012).

    [25] Xu K M, Kalantari A, Qian X P. Efficient AFM-based nanoparticle manipulation via sequential parallel pushing[J]. IEEE Transactions on Nanotechnology, 11, 666-675(2012).

    [26] Wang Z Y, Liu L Q, Wang Y C et al. Stable nanomanipulation using atomic force microscopy: a virtual nanohand for a robotic nanomanipulation system[J]. IEEE Nanotechnology Magazine, 7, 6-11(2013).

    [27] Xie H, Haliyo D S, Régnier S. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly[J]. Nanotechnology, 20, 215301(2009).

    [28] Park K J, Huh J H, Jung D W et al. Assembly of “3D” plasmonic clusters by “2D” AFM nanomanipulation of highly uniform and smooth gold nanospheres[J]. Scientific Reports, 7, 6045(2017).

    [29] Chen H, Zhang X L, Zhang Y Y et al. Atomically precise, custom-design origami graphene nanostructures[J]. Science, 365, 1036-1040(2019).

    [30] Vasić B, Matković A, Gajić R et al. Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation[J]. Carbon, 107, 723-732(2016).

    [31] van der Lit J, Jacobse P H, Vanmaekelbergh D et al. Bending and buckling of narrow armchair graphene nanoribbons via STM manipulation[J]. New Journal of Physics, 17, 053013(2015).

    [32] Masuo S, Kanetaka K, Sato R et al. Direct observation of multiphoton emission enhancement from a single quantum dot using AFM manipulation of a cubic gold nanoparticle[J]. ACS Photonics, 3, 109-116(2016).

    [33] Moreno-Moreno M, Ares P, Moreno C et al. AFM manipulation of gold nanowires to build electrical circuits[J]. Nano Letters, 19, 5459-5468(2019). http://pubs.acs.org/doi/10.1021/acs.nanolett.9b01972

    [34] Fukuda T, Arai F, Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations[J]. Proceedings of the IEEE, 91, 1803-1818(2003).

    [35] Fukuda T, Arai F, Dong L X. Nanorobotic systems[J]. International Journal of Advanced Robotic Systems, 2, 28(2005).

    [36] Shen Y J, Nakajima M, Yang Z et al. Design and characterization of nanoknife with buffering beam for in situ single-cell cutting[J]. Nanotechnology, 22, 305701(2011). http://www.ncbi.nlm.nih.gov/pubmed/21697582

    [37] Ahmad M R, Nakajima M, Kojima M et al. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system[J]. IEEE Transactions on NanoBioscience, 11, 70-78(2012).

    [38] Ahmad M R, Nakajima M, Kojima S et al. In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental SEM[J]. IEEE Transactions on Nanotechnology, 7, 607-616(2008). http://dl.acm.org/citation.cfm?id=2214176.2214787&coll=DL&dl=GUIDE&CFID=358185165&CFTOKEN=15072870

    [39] Ahmad M R, Nakajima M, Kojima M et al. Instantaneous and quantitative single cells viability determination using dual nanoprobe inside ESEM[J]. IEEE Transactions on Nanotechnology, 11, 298-306(2012). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6081943

    [40] Zimmermann S, Tiemerding T, Fatikow S. Automated robotic manipulation of individual colloidal particles using vision-based control[J]. IEEE/ASME Transactions on Mechatronics, 20, 2031-2038(2015).

    [41] Denisyuk A I, Komissarenko F E, Mukhin I S. Electrostatic pick-and-place micro/nanomanipulation under the electron beam[J]. Microelectronic Engineering, 121, 15-18(2014). http://www.sciencedirect.com/science/article/pii/S0167931714000513

    [42] Yang Z, Wang Y Q, Yang B et al. Mechatronic development and vision feedback control of a nanorobotics manipulation system inside SEM for nanodevice assembly[J]. Sensors, 16, 1479(2016).

    [43] Mølhave K, Wich T, Kortschack A et al. Pick-and-place nanomanipulation using microfabricated grippers[J]. Nanotechnology, 17, 2434-2441(2006).

    [44] Sardan O, Eichhorn V, Petersen D H et al. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers[J]. Nanotechnology, 19, 495503(2008). http://www.ncbi.nlm.nih.gov/pubmed/21730675

    [45] Rajendra K R T, Hassan S U, SardanS O et al. Nanobits: customizable scanning probe tips[J]. Nanotechnology, 20, 395703(2009). http://www.offis.de/nc/f_e_bereiche/energie/publikation/print.html?user_offis_pi1[action]=detail&user_offis_pi1[record]=10845&print=1

    [46] Carlson K, Andersen K N, Eichorn V et al. A carbon nanofibre scanning probe assembled using an electrothermal microgripper[J]. Nanotechnology, 18, 345501-345507(2007).

    [47] Zhang Y L, Zhang Y, Ru C H et al. A load-lock-compatible nanomanipulation system for scanning electron microscope[J]. IEEE/ASME Transactions on Mechatronics, 18, 230-237(2013).

    [48] Gong Z, Chen B K, Liu J et al. Robotic probing of nanostructures inside scanning electron microscopy[J]. IEEE Transactions on Robotics, 30, 758-765(2014).

    [49] Eichhorn V, Fatikow S, Wich T et al. Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope[J]. Journal of Micro-Nano Mechatronics, 4, 27-36(2008). http://link.springer.com/article/10.1007/s12213-008-0001-2

    [50] Zhou C, Gong Z, Chen B K et al. A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes[J]. IEEE/ASME Transactions on Mechatronics, 21, 1233-1241(2016).

    [51] Shen Y J, Nakajima M, Zhang Z H et al. Dynamic force characterization microscopy based on integrated nanorobotic AFM and SEM system for detachment process study[J]. IEEE/ASME Transactions on Mechatronics, 20, 3009-3017(2015).

    [52] Fatikow S, Eichhorn V, Bartenwerfer M. Nanomaterials enter the silicon-based CMOS era: nanorobotic technologies for nanoelectronic devices[J]. IEEE Nanotechnology Magazine, 6, 14-18(2012).

    [53] Dong L X, Arai F, Fukuda T. Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation[J]. IEEE/ASME Transactions on Mechatronics, 9, 350-357(2004).

    [54] Zimmermann S, Tiemerding T, Li T et al. Automated mechanical characterization of 2-D materials using SEM based visual servoing[J]. International Journal of Optomechatronics, 7, 283-295(2013).

    [55] Mikczinski M R, Josefsson G, Chinga-Carrasco G et al. Nanorobotic testing to assess the stiffness properties of nanopaper[J]. IEEE Transactions on Robotics, 30, 115-119(2014).

    [56] Ru C H, Zhang Y, Sun Y et al. Automated four-point probe measurement of nanowires inside a scanning electron microscope[J]. IEEE Transactions on Nanotechnology, 10, 674-681(2011).

    [57] Ye X T, Zhang Y, Ru C H et al. Automated pick-place of silicon nanowires[J]. IEEE Transactions on Automation Science and Engineering, 10, 554-561(2013).

    [58] Shi Q, Yang Z, Guo Y N et al. A vision-based automated manipulation system for the pick-up of carbon nanotubes[J]. IEEE/ASME Transactions on Mechatronics, 22, 845-854(2017).

    [59] Ding H Y, Shi C Y, Ma L et al. Visual servoing-based nanorobotic system for automated electrical characterization of nanotubes inside SEM[J]. Sensors, 18, 1137(2018). http://www.ncbi.nlm.nih.gov/pubmed/29642495

    [60] Yu N, Nakajima M, Shi Q et al. Characterization of the resistance and force of a carbon nanotube/metal side contact by nanomanipulation[J]. Scanning, 2017, 5910734(2017). http://europepmc.org/articles/PMC5662070/

    [61] Yu N, Shi Q, Nakajima M et al. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition[J]. Journal of Micromechanics and Microengineering, 27, 105007(2017).

    [62] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [63] Li Y M, Gong L, Li D et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 42, 0101001(2015).

    [64] Chen Z Y, Fang G, Cao L C et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 45, 0402006(2018).

    [65] Peng F, Yao B L, Lei M et al. Fabrication of micro devices by use of optical tweezers[J]. Chinese Journal of Lasers, 37, 1245-1252(2010).

    [66] Yan Z J, Jureller J E, Sweet J et al. Three-dimensional optical trapping and manipulation of single silver nanowires[J]. Nano Letters, 12, 5155-5161(2012). http://europepmc.org/abstract/MED/22931238

    [67] Jauffred L, Taheri S M R, Schmitt R et al. Optical trapping of gold nanoparticles in air[J]. Nano Letters, 15, 4713-4719(2015).

    [68] Liu B H, Yang L J, Wang Y. Optical trapping force combining an optical fiber probe and an AFM metallic probe[J]. Optics Express, 19, 3703-3714(2011).

    [69] Lu X W, Yang L J, Xie H et al. Simulations of the near-field enhancement on AFM tip irradiated by annular laser beam[J]. IEEE Transactions on Nanotechnology, 18, 979-982(2019).

    [70] Cui J L, Yang L J, Wang Y. Simulation study of near-field enhancement on a laser-irradiated AFM metal probe[J]. Laser Physics, 23, 076003(2013). http://adsabs.harvard.edu/abs/2013LaPhy..23g6003C

    [71] Ghosh S, Ghosh A. Next-generation optical nanotweezers for dynamic manipulation: from surface to bulk[J]. Langmuir, 36, 5691-5708(2020). http://www.researchgate.net/publication/341344441_Next-Generation_Optical_Nanotweezers_for_Dynamic_Manipulation_From_Surface_to_Bulk

    [72] Mandal S, Serey X, Erickson D. Nanomanipulation using silicon photonic crystal resonators[J]. Nano Letters, 10, 99-104(2010). http://pubs.acs.org/doi/10.1021/nl9029225

    [73] Saleh A A E, Dionne J A. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures[J]. Nano Letters, 12, 5581-5586(2012).

    [74] Zhang W H, Huang L N, Santschi C et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas[J]. Nano Letters, 10, 1006-1011(2010). http://pubs.acs.org/doi/abs/10.1021/nl904168f

    [75] Chen K Y, Lee A T, Hung C C et al. Transport and trapping in two-dimensional nanoscale plasmonic optical lattice[J]. Nano Letters, 13, 4118-4122(2013). http://pubs.acs.org/doi/10.1021/nl4016254

    [76] Pang Y J, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film[J]. Nano Letters, 11, 3763-3767(2011).

    [77] Kotnala A, Gordon R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer[J]. Nano Letters, 14, 853-856(2014).

    [78] Taylor R S, Hnatovsky C. Particle trapping in 3-D using a single fiber probe with an annular light distribution[J]. Optics Express, 11, 2775-2782(2003). http://europepmc.org/abstract/MED/19471393

    [79] Anastasiadi G, Leonard M, Paterson L et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J]. Optics Express, 26, 3557-3567(2018).

    [80] Liu Z H, Wang T, Zhang Y X et al. Single fiber dual-functionality optical tweezers based on graded-index multimode fiber[J]. Chinese Optics Letters, 16, 053501(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ37531c248a7e40d

    [81] Berthelot J, Aćimović S S, Juan M L et al. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 9, 295-299(2014). http://europepmc.org/abstract/MED/24584272

    Genwang Wang, Yanchao Guan, Yang Wang, Ye Ding, Lijun Yang. Recent Progress in Research and Application of Nano-Manipulation Technologies[J]. Chinese Journal of Lasers, 2021, 48(8): 0802018
    Download Citation