[1] A Forbes, Oliveira M de, M R Dennis. Structured light. Nat Photonics, 15, 253-262(2021).
[2] A Forbes. Structured light from lasers. Laser Photonics Rev, 13, 1900140(2019).
[3] W Li, J W Yu, A M Yan. Research progress of vortex beam array generation technology. Laser Optoelectron Prog, 57, 090002(2020).
[4] M E Fermann, I Hartl. Ultrafast fibre lasers. Nat Photonics, 7, 868-874(2013).
[5] T Fortier, E Baumann. 20 years of developments in optical frequency comb technology and applications. Commun Phys, 2, 153(2019).
[6] L Chang, S T Liu, J E Bowers. Integrated optical frequency comb technologies. Nat Photonics, 16, 95-108(2022).
[7] J X Zuo, X C Lin. High-power laser systems. Laser Photonics Rev, 16, 2100741(2022).
[8] C Rosales-Guzmán, B Ndagano, A Forbes. A review of complex vector light fields and their applications. J Opt, 20, 123001(2018).
[9] S J Zheng, X Lin, Z Y Huang et al. Light field regulation based on polarization holography. Opto-Electron Eng, 49, 220114(2022).
[10] L Allen, M W Beijersbergen, R J C Spreeuw et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A, 45, 8185-8189(1992).
[11] Z C Zhang, L Hai, S Y Fu et al. Advances on solid-state vortex laser. Photonics, 9, 215(2022).
[12] A M Yao, M J Padgett. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics, 3, 161-204(2011).
[13] R Y Zeng, Q Zhao, Y J Shen et al. Structural stability of open vortex beams. Appl Phys Lett, 119, 171105(2021).
[14] Y H Bai, H R Lv, X Fu et al. Vortex beam: generation and detection of orbital angular momentum [Invited]. Chin Opt Lett, 20, 012601(2022).
[15] J Wang, J Y Yang, I M Fazal et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics, 6, 488-496(2012).
[16] N Bozinovic, Y Yue, Y X Ren et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).
[17] A E Willner, H Huang, Y Yan et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics, 7, 66-106(2015).
[18] S Y Yu. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express, 23, 3075-3087(2015).
[19] J Wang. Advances in communications using optical vortices. Photonics Res, 4, B14-B28(2016).
[20] S Y Fu, Y W Zhai, H Zhou et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices. Chin Opt Lett, 17, 080602(2019).
[21] S Y Fu, Y W Zhai, H Zhou et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt Express, 27, 33111-33119(2019).
[22] S Y Fu, Y W Zhai, H Zhou et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Opt Lett, 44, 4753-4756(2019).
[23] M P J Lavery, F C Speirits, S M Barnett et al. Detection of a spinning object using light's orbital angular momentum. Science, 341, 537-540(2013).
[24] M P J Lavery, S M Barnett, F C Speirits et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).
[25] L Fang, M J Padgett, J Wang. Sharing a common origin between the rotational and linear doppler effects (Laser Photonics Rev. 11(6)/2017). Laser Photonics Rev, 11, 1770064(2017).
[26] S Y Fu, T L Wang, Z Y Zhang et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express, 25, 20098-20108(2017).
[27] W H Zhang, J S Gao, D K Zhang et al. Free-space remote sensing of rotation at the photon-counting level. Phys Rev Appl, 10, 044014(2018).
[28] S Qiu, T Liu, Y Ren et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Opt Express, 27, 24781-24792(2019).
[29] Y W Zhai, S Y Fu, C Yin et al. Detection of angular acceleration based on optical rotational Doppler effect. Opt Express, 27, 15518-15527(2019).
[30] Y W Zhai, S Y Fu, J Q Zhang et al. Remote detection of a rotator based on rotational Doppler effect. Appl Phys Express, 13, 022012(2020).
[31] M Padgett, R Bowman. Tweezers with a twist. Nat Photonics, 5, 343-348(2011).
[32] M Z Chen, M Mazilu, Y Arita et al. Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett, 38, 4919-4922(2013).
[33] M Gecevičius, R Drevinskas, M Beresna et al. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl Phys Lett, 104, 231110(2014).
[34] Y S Liang, B L Yao, B H Ma et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator. Acta Opt Sin, 36, 309001(2016).
[35] Y J Yang, Y X Ren, M Z Chen et al. Optical trapping with structured light: a review. Adv Photonics, 3, 034001(2021).
[36] R Fickler, R Lapkiewicz, M Huber et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat Commun, 5, 4502(2014).
[37] H Cao, S C Gao, C Zhang et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber. Optica, 7, 232-237(2020).
[38] Z X Li, D Zhu, P C Lin et al. High-dimensional entanglement generation based on a Pancharatnam-Berry phase metasurface. Photonics Res, 10, 2702-2707(2022).
[39] Y J Shen, C Rosales-Guzmán. Nonseparable states of light: from quantum to classical. Laser Photonics Rev, 16, 2100533(2022).
[40] Z S Wan, H Wang, Q Liu et al. Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photonics, 10, 2149-2164(2023).
[41] Y L Liu, Z Dong, Y H Chen et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications. Opto-Electron Eng, 49, 220178(2022).
[42] D K Zhang, X Feng, K Y Cui et al. Identifying orbital angular momentum of vectorial vortices with pancharatnam phase and stokes parameters. Sci Rep, 5, 11982(2015).
[43] V G Niziev, A V Nesterov. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys, 32, 1455-1461(1999).
[44] M Meier, V Romano, T Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl Phys A Mater Sci Process, 86, 329-334(2007).
[45] W Q Zhao, F Tang, L R Qiu et al. Research status and application on the focusing properties of cylindrical vector beams. Acta Phys Sin, 62, 054201(2013).
[46] Z H Zhou, Q F Tan, G F Jin. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams. Chin Opt Lett, 8, 1178-1181(2010).
[47] F Töppel, A Aiello, C Marquardt et al. Classical entanglement in polarization metrology. New J Phys, 16, 073019(2014).
[48] Y J Shen, Q Zhang, P Shi et al. Optical skyrmions and other topological quasiparticles of light. Nat Photonics, 18, 15-25(2024).
[49] G Lazarev, P J Chen, J Strauss et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited]. Opt Express, 27, 16206-16249(2019).
[50] M Mirhosseini, O S Magaña-Loaiza, C C Chen et al. Rapid generation of light beams carrying orbital angular momentum. Opt Express, 21, 30196-30203(2013).
[51] Y X Ren, M Li, K Huang et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device. Appl Opt, 49, 1838-1844(2010).
[52] Y Chen, Z X Fang, Y X Ren et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device. Appl Opt, 54, 8030-8035(2015).
[53] W Ji, C H Lee, P Chen et al. Meta-q-plate for complex beam shaping. Sci Rep, 6, 25528(2016).
[54] H Zhou, J Q Yang, C Q Gao et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation. Opt Mater Express, 9, 2699-2707(2019).
[55] A M Shaltout, K G Lagoudakis, De Groep J Van et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science, 365, 374-377(2019).
[56] A M Shaltout, V M Shalaev, M L Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).
[57] P H Jones, M Rashid, M Makita et al. Sagnac interferometer method for synthesis of fractional polarization vortices. Opt Lett, 34, 2560-2562(2009).
[58] S Liu, P Li, T Peng et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt Express, 20, 21715-21721(2012).
[59] P Li, Y Zhang, S Liu et al. Generation of perfect vectorial vortex beams. Opt Lett, 41, 2205-2208(2016).
[60] S Liu, S X Qi, Y Zhang et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Res, 6, 228-233(2018).
[61] C Maurer, A Jesacher, S Fürhapter et al. Tailoring of arbitrary optical vector beams. New J Phys, 9, 78(2007).
[62] X L Wang, J P Ding, W J Ni et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt Lett, 32, 3549-3551(2007).
[63] Y Y Xie, Z J Cheng, X Liu et al. Simple method for generation of vector beams using a small-angle birefringent beam splitter. Opt Lett, 40, 5109-5112(2015).
[64] Y J Shen, E C Martínez, C Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photonics, 9, 296-303(2022).
[65] I Moreno, J A Davis, D M Cottrell et al. Encoding high-order cylindrically polarized light beams. Appl Opt, 53, 5493-5501(2014).
[66] S Y Fu, C Q Gao, Y Shi et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer. Opt Lett, 40, 1775-1778(2015).
[67] S Y Fu, T L Wang, C Q Gao. Generating perfect polarization vortices through encoding liquid-crystal display devices. Appl Opt, 55, 6501-6505(2016).
[68] L Marrucci, C Manzo, D Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett, 96, 163905(2006).
[69] X N Yi, X H Ling, Z Y Zhang et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt Express, 22, 17207-17215(2014).
[70] S Y Fu, C Q Gao, T L Wang et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt Lett, 41, 5454-5457(2016).
[71] F Y Yue, D D Wen, C M Zhang et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv Mater, 29, 1603838(2017).
[72] X Zhang, L L Huang, R Z Zhao et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces. Laser Photonics Rev, 16, 2100451(2022).
[73] H S Wu, Q J Zeng, X R Wang et al. Polarization-dependent phase-modulation metasurface for vortex beam (de)multiplexing. Nanophotonics, 12, 1129-1135(2023).
[74] L Ke, S M Zhang, C X Li et al. Research progress on hybrid vector beam implementation by metasurfaces. Opto-Electron Eng, 50, 230117(2023).
[75] D Naidoo, F S Roux, A Dudley et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat Photonics, 10, 327-332(2016).
[76] J T Fan, J Zhao, L P Shi et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator. Adv Photonics, 2, 045001(2020).
[77] R Song, C Q Gao, H Zhou et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm. Opt Lett, 45, 4626-4629(2020).
[78] R Song, X T Liu, S Y Fu et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser. Chin Opt Lett, 19, 111404(2021).
[79] H Sroor, Y W Huang, B Sephton et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat Photonics, 14, 498-503(2020).
[80] Y J Shen, Z Y Wang, X Fu et al. SU(2) Poincare sphere: A generalized representation for multidimensional structured light. Phys Rev A, 102, 031501(2020).
[81] Y J Shen. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light. J Opt, 23, 124004(2021).
[82] Y F Chen, C H Jiang, Y P Lan et al. Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity. Phys Rev A, 69, 053807(2004).
[83] J Dingjan, Exter M P van, J P Woerdman. Geometric modes in a single-frequency Nd: YVO4 laser. Opt Commun, 188, 345-351(2001).
[84] Y J Shen, X L Yang, X Fu et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator. Appl Opt, 57, 9543-9549(2018).
[85] J C Tung, H C Liang, T H Lu et al. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter. Opt Express, 24, 22796-22805(2016).
[86] Y J Shen, X L Yang, D Naidoo et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum. Optica, 7, 1705(2020).
[87] Z S Wan, Z Y Wang, X L Yang et al. Digitally tailoring arbitrary structured light of generalized ray-wave duality. Opt Express, 28, 31043-31056(2020).
[88] Y J Shen, I Nape, X L Yang et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl, 10, 50(2021).
[89] Z Y Wang, Y J Shen, D Naidoo et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics. Opt Express, 29, 315-329(2021).
[90] Z S Wan, Y J Shen, Q Liu et al. Multipartite classically entangled scalar beams. Opt Lett, 47, 2052-2055(2022).
[91] J Pan, Z Y Wang, Z Y Zhan et al. Multiaxial super-geometric mode laser. Opt Lett, 48, 1630-1633(2023).
[92] Z S Wan, Y J Shen, Z Y Wang et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Light Sci Appl, 11, 144(2022).
[93] L Hai, Z C Zhang, S L Liu et al. Intra-cavity laser manipulation of high-dimensional non-separable states. Laser Photonics Rev, 18, 2300593(2024).
[94] D G Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).
[95] S Y Fu, T L Wang, C Q Gao. Perfect optical vortex array with controllable diffraction order and topological charge. J Opt Soc America A, 33, 1836-1842(2016).
[96] S Y Fu, S K Zhang, T L Wang et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions. Opt Express, 24, 18486-18491(2016).
[98] H Wang, S Y Fu, C Q Gao. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom. Opt Express, 29, 10811-10824(2021).
[99] S Y Fu, T L Wang, Z Y Zhang et al. Selective acquisition of multiple states on hybrid Poincare sphere. Appl Phys Lett, 110, 191102(2017).
[100] Z J Shang, S Y Fu, L Hai et al. Multiplexed vortex state array toward high-dimensional data multicasting. Opt Express, 30, 34053-34063(2022).
[101] M Piccardo, Oliveira M de, A Toma et al. Vortex laser arrays with topological charge control and self-healing of defects. Nat Photonics, 16, 359-365(2022).
[102] M Yessenov, L A Hall, K L Schepler et al. Space-time wave packets. Adv Opt Photonics, 14, 455-570(2022).
[103] Q Cao, Q W Zhan. Spatiotemporal sculpturing of light and recent development in spatiotemporal optical vortices wavepackets (Invited). Acta Photonica Sin, 51, 0151102(2022).
[104] J C Ni, C W Wang, C C Zhang et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl, 6, e17011(2017).
[105] G Ruffato. Non-destructive OAM measurement via light-matter interaction. Light Sci Appl, 11, 55(2022).
[106] Z Zhao, H Song, R Z Zhang et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat Commun, 11, 4099(2020).
[107] A Chong, C H Wan, J Chen et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics, 14, 350-354(2020).
[108] C H Wan, J Chen, A Chong et al. Photonic orbital angular momentum with controllable orientation. Natl Sci Rev, 9, nwab149(2022).
[109] Q Cao, P K Zheng, Q W Zhan. Vectorial sculpturing of spatiotemporal wavepackets. APL Photonics, 7, 096102(2022).
[110] C H Wan, Q Cao, J Chen et al. Toroidal vortices of light. Nat Photonics, 16, 519-522(2022).
[111] W Chen, Y Liu, A Z Yu et al. Observation of chiral symmetry breaking in toroidal vortices of light. Phys Rev Lett, 132, 153801(2024).
[112] N Papasimakis, T Raybould, V A Fedotov et al. Pulse generation scheme for flying electromagnetic doughnuts. Phys Rev B, 97, 201409(2018).
[113] Y J Shen, B S Yu, H J Wu et al. Topological transformation and free-space transport of photonic hopfions. Adv Photonics, 5, 015001(2023).
[114] A Zdagkas, C McDonnell, J H Deng et al. Observation of toroidal pulses of light. Nat Photonics, 16, 523-528(2022).
[115] C Guo, M Xiao, M Orenstein et al. Structured 3D linear space-time light bullets by nonlocal nanophotonics. Light Sci Appl, 10, 160(2021).