• Photonics Research
  • Vol. 12, Issue 4, 663 (2024)
Baoqi Shi1、2、†, Yi-Han Luo2、3、†, Wei Sun2, Yue Hu2、3, Jinbao Long2, Xue Bai2, Anting Wang1、5, and Junqiu Liu2、4、*
Author Affiliations
  • 1Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
  • 2International Quantum Academy, Shenzhen 518048, China
  • 3Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • 5e-mail: atwang@ustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.510795 Cite this Article Set citation alerts
    Baoqi Shi, Yi-Han Luo, Wei Sun, Yue Hu, Jinbao Long, Xue Bai, Anting Wang, Junqiu Liu. Frequency-comb-linearized, widely tunable lasers for coherent ranging[J]. Photonics Research, 2024, 12(4): 663 Copy Citation Text show less
    References

    [1] B. Cense, N. A. Nassif, T. C. Chen. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express, 12, 2435-2447(2004).

    [2] I. Grulkowski, J. J. Liu, B. Potsaid. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express, 3, 2733-2751(2012).

    [3] H. J. Shammas, S. Ortiz, M. C. Shammas. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. J. Cataract Refract. Surg., 42, 50-61(2016).

    [4] F. Lexer, C. K. Hitzenberger, A. F. Fercher. Wavelength-tuning interferometry of intraocular distances. Appl. Opt., 36, 6548-6553(1997).

    [5] B. J. Soller, D. K. Gifford, M. S. Wolfe. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express, 13, 666-674(2005).

    [6] J. Liu, V. Brasch, M. H. P. Pfeiffer. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers. Opt. Lett., 41, 3134-3137(2016).

    [7] R. Gotti, T. Puppe, Y. Mayzlin. Comb-locked frequency-swept synthesizer for high precision broadband spectroscopy. Sci. Rep., 10, 2523(2020).

    [8] X. Liu, Y. Ma. Tunable diode laser absorption spectroscopy based temperature measurement with a single diode laser near 1.4 μm. Sensors, 22, 2733-2751(2022).

    [9] P. A. Roos, R. R. Reibel, T. Berg. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett., 34, 3692-3694(2009).

    [10] E. Baumann, F. R. Giorgetta, I. Coddington. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. Opt. Lett., 38, 2026-2028(2013).

    [11] N. Kuse, M. E. Fermann. Frequency-modulated comb lidar. APL Photonics, 4, 106105(2019).

    [12] M. Okano, C. Chong. Swept source lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt. Express, 28, 23898-23915(2020).

    [13] I. Kim, R. J. Martins, J. Jang. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [14] G. Lihachev, J. Riemensberger, W. Weng. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun., 13, 3522(2022).

    [15] U. Glombitza, E. Brinkmeyer. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Lightwave Technol., 11, 1377-1384(1993).

    [16] T. Ahn, J. Y. Lee, D. Y. Kim. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation. Appl. Opt., 44, 7630-7634(2005).

    [17] M. Badar, P. Lu, M. Buric. Integrated auxiliary interferometer for self-correction of nonlinear tuning in optical frequency domain reflectometry. J. Lightwave Technol., 38, 6097-6103(2020).

    [18] X. Zhang, J. Pouls, M. C. Wu. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW lidar. Opt. Express, 27, 9965-9974(2019).

    [19] P. Del’Haye, O. Arcizet, M. L. Gorodetsky. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photonics, 3, 529-533(2009).

    [20] F. R. Giorgetta, I. Coddington, E. Baumann. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nat. Photonics, 4, 853-857(2010).

    [21] S. Fujii, T. Tanabe. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics, 9, 1087-1104(2020).

    [22] K. Twayana, Z. Ye, Ó. B. Helgason. Frequency-comb-calibrated swept-wavelength interferometry. Opt. Express, 29, 24363-24372(2021).

    [23] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [24] S. T. Cundiff, J. Ye. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys., 75, 325-342(2003).

    [25] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [26] L. Marple. Computing the discrete-time “analytic” signal via FFT. IEEE Trans. Signal Process., 47, 2600-2603(1999).

    [27] T. Herr, V. Brasch, J. D. Jost. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2013).

    [28] H. Guo, M. Karpov, E. Lucas. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [29] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [30] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [31] H. Zhou, Y. Geng, W. Cui. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [32] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [33] H. Weng, J. Liu, A. A. Afridi. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Res., 9, 1351-1357(2021).

    [34] D. Xia, Z. Yang, P. Zeng. Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev., 17, 2200219(2023).

    [35] K. Liu, Z. Wang, S. Yao. Mitigating fast thermal instability by engineered laser sweep in AlN soliton microcomb generation. Photonics Res., 11, A10-A18(2023).

    [36] Y. Bai, M. Zhang, Q. Shi. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett., 126, 063901(2021).

    [37] Y.-H. Luo, B. Shi, W. Sun. A wideband, high-resolution vector spectrum analyzer for integrated photonics(2023).

    [38] C. L. Giusca, R. K. Leach, F. Helery. Calibration of the scales of areal surface topography measuring instruments: part 2. amplification, linearity and squareness. Meas. Sci. Technol., 23, 065005(2012).

    [39] M. A. Lefsky, W. B. Cohen, G. G. Parker. Lidar remote sensing for ecosystem studies. Bioscience, 52, 19-30(2002).

    [40] M. P. Simard, N. F. Pinto, B. Joshua. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci., 116, G04021(2011).

    [41] F. G. Fernald. Analysis of atmospheric lidar observations: some comments. Appl. Opt., 23, 652-653(1984).

    [42] M. A. Vaughan, K. A. Powell, D. M. Winker. Fully automated detection of cloud and aerosol layers in the calipso lidar measurements. J. Atmos. Ocean. Technol., 26, 2034-2050(2009).

    [43] D. J. Mulla. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng., 114, 358-371(2013).

    [44] X. Chen, H. Ma, J. Wan. Multi-view 3D object detection network for autonomous driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6526-6534(2017).

    [45] X. Yue, B. Wu, S. A. Seshia. A lidar point cloud generator: from a virtual world to autonomous driving. Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, 458-464(2018).

    [46] A. Lukashchuk, J. Riemensberger, A. Stroganov. Chaotic microcomb inertia-free parallel ranging. APL Photonics, 8, 056102(2023).

    [47] R. Chen, H. Shu, B. Shen. Breaking the temporal and frequency congestion of lidar by parallel chaos. Nat. Photonics, 17, 306-314(2023).

    [48] A. F. Chase, D. Z. Chase, J. F. Weishampel. Airborne lidar, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeolog. Sci., 38, 387-398(2011).

    [49] A. F. Chase, D. Z. Chase, C. T. Fisher. Geospatial revolution and remote sensing lidar in mesoamerican archaeology. Proc. Natl. Acad. Sci. USA, 109, 12916-12921(2012).

    [50] D. H. Evans, R. J. Fletcher, C. Pottier. Uncovering archaeological landscapes at angkor using lidar. Proc. Natl. Acad. Sci. USA, 110, 12595-12600(2013).

    [51] M.-C. Amann, T. M. Bosch, M. Lescure. Laser ranging: a critical review of unusual techniques for distance measurement. Opt. Eng., 40, 10-19(2001).

    [52] K. A. Shinpaugh, R. L. Simpson, A. L. Wicks. Signal-processing techniques for low signal-to-noise ratio laser Doppler velocimetry signals. Exp. Fluids, 12, 319-328(1992).

    [53] https://doi.org/10.5281/zenodo.10602748. https://doi.org/10.5281/zenodo.10602748

    Baoqi Shi, Yi-Han Luo, Wei Sun, Yue Hu, Jinbao Long, Xue Bai, Anting Wang, Junqiu Liu. Frequency-comb-linearized, widely tunable lasers for coherent ranging[J]. Photonics Research, 2024, 12(4): 663
    Download Citation