• Advanced Photonics
  • Vol. 3, Issue 3, 036002 (2021)
Rocio Camacho-Morales1、*, Davide Rocco2, Lei Xu1、3、4, Valerio Flavio Gili5、6, Nikolay Dimitrov7, Lyubomir Stoyanov7, Zhonghua Ma1, Andrei Komar1, Mykhaylo Lysevych1, Fouad Karouta1, Alexander Dreischuh7, Hark Hoe Tan1, Giuseppe Leo5, Costantino De Angelis2, Chennupati Jagadish1, Andrey E. Miroshnichenko3, Mohsen Rahmani1、4, and Dragomir N. Neshev1
Author Affiliations
  • 1The Australian National University, Research School of Physics, ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Canberra, ACT, Australia
  • 2University of Brescia, Department of Information Engineering, Brescia, Italy
  • 3University of New South Wales, School of Engineering and Information Technology, Canberra, ACT, Australia
  • 4Nottingham Trent University, School of Science and Technology, Advanced Optics and Photonics Laboratory, Department of Engineering, Nottingham, United Kingdom
  • 5Université Paris Diderot, Matériaux et Phénomènes Quantiques, Paris, France
  • 6Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, Jena, Germany
  • 7Sofia University, Department of Quantum Electronics, Faculty of Physics, Sofia, Bulgaria
  • show less
    DOI: 10.1117/1.AP.3.3.036002 Cite this Article Set citation alerts
    Rocio Camacho-Morales, Davide Rocco, Lei Xu, Valerio Flavio Gili, Nikolay Dimitrov, Lyubomir Stoyanov, Zhonghua Ma, Andrei Komar, Mykhaylo Lysevych, Fouad Karouta, Alexander Dreischuh, Hark Hoe Tan, Giuseppe Leo, Costantino De Angelis, Chennupati Jagadish, Andrey E. Miroshnichenko, Mohsen Rahmani, Dragomir N. Neshev. Infrared upconversion imaging in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(3): 036002 Copy Citation Text show less
    References

    [1] J. M. Schmitt, S. H. Xiang, K. M. Yung. Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A, 15, 2288-2296(1998).

    [2] N. Boone et al. Thermal near infrared monitoring system for electron beam melting with emissivity tracking. Addit. Manuf., 22, 601-605(2018).

    [3] W. Wang, J. Paliwal. Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food Qual. Saf., 1, 193-207(2007).

    [4] J.-E. Källhammer. Imaging: the road ahead for car night-vision. Nat. Photon., 12-13(2006).

    [5] H. Xia et al. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector. Opt. Lett., 40, 1579-1582(2015). https://doi.org/10.1364/OL.40.001579

    [6] L. Høgstedt et al. Upconversion-based lidar measurements of atmospheric CO2. Opt. Express, 24, 5152-5161(2016). https://doi.org/10.1364/OE.24.005152

    [7] J. E. Midwinter. Image conversion from 1.6  μ to the visible in lithium niobate. Appl. Phys. Lett., 12, 68-70(1968). https://doi.org/10.1063/1.1651902

    [8] J. E. Midwinter. Infrared up conversion in lithium-niobate with large bandwidth and acceptance angle. Appl. Phys. Lett., 14, 29-32(1969).

    [9] R. Andrews. IR image parametric up-conversion. IEEE J. Quantum Electron., 6, 68-80(1970).

    [10] J. F. Weller, R. A. Andrews. Resolution measurements in parametric upconversion of images. Opto-electronics, 2, 171-176(1970).

    [11] E. S. Voronin et al. The influence of the radiation spectrum bandwidth on the resolution of an image up-converter. Opto-electronics, 3, 153-155(1971).

    [12] M. M. Abbas, T. Kostiuk, K. W. Ogilvie. Infrared upconversion for astronomical applications. Appl. Opt., 15, 961-970(1976).

    [13] M. Vasilyev, P. Kumar. Frequency up-conversion of quantum images. Opt. Express, 20, 6644-6656(2012).

    [14] A. J. Torregrosa, H. Maestre, J. Capmany. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm. Opt. Lett., 40, 5315-5318(2015).

    [15] R. Demur et al. Near-infrared to visible upconversion imaging using a broadband pump laser. Opt. Express, 26, 13252-13263(2018).

    [16] P. M. Vaughan, R. Trebino. Optical-parametric-amplification imaging of complex objects. Opt. Express, 19, 8920-8929(2011).

    [17] L. Huot et al. Upconversion imaging using an all-fiber supercontinuum source. Opt. Lett., 41, 2466-2469(2016).

    [18] A. S. Ashik et al. Mid-infrared upconversion imaging using femtosecond pulses. Photonics Res., 7, 783-791(2019).

    [19] A. Jacobo et al. Use of nonlinear properties of intracavity type II second harmonic generation for image processing. Appl. Phys. B, 81, 955-962(2005).

    [20] M. J. Padgett, R. W. Boyd. An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. A, 375, 20160233(2017).

    [21] D. Neshev, I. Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl., 7, 58(2018).

    [22] M. Rahmani et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv., 1, 180021(2018).

    [23] C. De Angelis, G. Leo, D. Neshev. Nonlinear Meta-Optics(2020).

    [24] M. R. Shcherbakov et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett., 14, 6488-6492(2014).

    [25] Y. Yang et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [26] W. Tong et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt. Express, 24, 19661-19670(2016).

    [27] M. Semmlinger et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface. Nano Lett., 19, 8972-8978(2019). https://doi.org/10.1021/acs.nanolett.9b03961

    [28] M. Ohashi et al. Determination of quadratic nonlinear optical coefficient of AlxGa1xAs system by the method of reflected second harmonics. J. Appl. Phys., 74, 596-601(1993). https://doi.org/10.1063/1.355272

    [29] V. F. Gili et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express, 24, 15965-15971(2016).

    [30] S. Liu et al. Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

    [31] R. Camacho-Morales et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett., 16, 7191-7197(2016).

    [32] S. Liu et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat. Commun., 9, 2507(2018).

    [33] F. J. F. Löchner et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics, 5, 1786-1793(2018).

    [34] P. P. Vabishchevich et al. Enhanced second-harmonic generation using broken symmetry iii–v semiconductor fano metasurfaces. ACS Photonics, 5, 1685-1690(2018).

    [35] G. Marino et al. Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces. ACS Photonics, 6, 1226-1231(2019).

    [36] D. Rocco et al. Vertical second harmonic generation in asymmetric dielectric nanoantennas. IEEE Photonics J., 12, 4500507(2020).

    [37] J. D. Sautter et al. Tailoring second-harmonic emission from (111)-GaAs nanoantennas. Nano Lett., 19, 3905-3911(2019).

    [38] L. Xu et al. Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas. ACS Nano, 14, 1379-1389(2020).

    [39] J. Krieg, U. Adomeit. Comparative long-time visible and shortwave infrared night illumination measurements. Appl. Opt., 58, 9876-9882(2019).

    [40] L. Carletti et al. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt. Express, 23, 26544-26550(2015).

    [41] A. Noor et al. Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas. ACS Photonics, 7, 3333-3340(2020).

    [42] D. E. Aspnes et al. Optical properties of AlxGa1xAs. J. Appl. Phys., 60, 754-767(1986). https://doi.org/10.1063/1.337426

    [43] M. Khorasaninejad et al. Multispectral chiral imaging with a metalens. Nano Lett., 16, 4595-4600(2016).

    [44] J. Guo et al. Polarization multiplexing for double images display. Opto-Electron. Adv., 2, 180029(2019).

    [45] M. Celebrano et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 10, 412-417(2015).

    [46] R. Colom et al. Enhanced four-wave mixing in doubly resonant Si nanoresonators. ACS Photonics, 6, 1295-1301(2019).

    [47] H. Harutyunyan et al. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett., 108, 217403(2012).

    [48] C. Schlickriede et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett., 20, 4370-4376(2020).

    [49] L. Antonucci et al. Asynchronous optical sampling with arbitrary detuning between laser repetition rates. Opt. Express, 20, 17928-17937(2012).

    [50] J. S. Dam, C. Pedersen, P. Tidemand-Lichtenberg. Theory for upconversion of incoherent images. Opt. Express, 20, 1475-1482(2012).

    [51] S. Junaid et al. Mid-infrared upconversion based hyperspectral imaging. Opt. Express, 26, 2203-2211(2018).

    [52] K. Koshelev et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [53] A. P. Anthur et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett., 20, 8745-8751(2020).

    [54] J. Cambiasso et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett., 17, 1219-1225(2017).

    [55] L. Xu et al. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photonics, 2, 026003(2020).

    CLP Journals

    [1] Zhihao Zhou, Wei Liu, Hengzhe Yan, Xianfeng Chen, Wenjie Wan. Nonlinear thermal emission and visible thermometry[J]. Advanced Photonics, 2022, 4(4): 045001

    Rocio Camacho-Morales, Davide Rocco, Lei Xu, Valerio Flavio Gili, Nikolay Dimitrov, Lyubomir Stoyanov, Zhonghua Ma, Andrei Komar, Mykhaylo Lysevych, Fouad Karouta, Alexander Dreischuh, Hark Hoe Tan, Giuseppe Leo, Costantino De Angelis, Chennupati Jagadish, Andrey E. Miroshnichenko, Mohsen Rahmani, Dragomir N. Neshev. Infrared upconversion imaging in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(3): 036002
    Download Citation