• Advanced Photonics
  • Vol. 4, Issue 6, 066002 (2022)
Dazhao Zhu1、†, Liang Xu2, Chenliang Ding1, Zhenyao Yang1, Yiwei Qiu1, Chun Cao1, Hongyang He3, Jiawei Chen3, Mengbo Tang1, Lanxin Zhan1, Xiaoyi Zhang1, Qiuyuan Sun1, Chengpeng Ma1, Zhen Wei1, Wenjie Liu1、2, Xiang Fu4, Cuifang Kuang1、2、*, Haifeng Li1、2, and Xu Liu1、2、*
Author Affiliations
  • 1Zhejiang Lab, Research Center for Intelligent Chips and Devices, Hangzhou, China
  • 2Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 3Zhejiang University, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Hangzhou, China
  • 4Zhejiang Lab, Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.4.6.066002 Cite this Article Set citation alerts
    Dazhao Zhu, Liang Xu, Chenliang Ding, Zhenyao Yang, Yiwei Qiu, Chun Cao, Hongyang He, Jiawei Chen, Mengbo Tang, Lanxin Zhan, Xiaoyi Zhang, Qiuyuan Sun, Chengpeng Ma, Zhen Wei, Wenjie Liu, Xiang Fu, Cuifang Kuang, Haifeng Li, Xu Liu. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography[J]. Advanced Photonics, 2022, 4(6): 066002 Copy Citation Text show less
    References

    [1] R. Wollhofen et al. 120 nm resolution and 55 nm structure size in STED-lithography. Opt. Express, 21, 10831-10840(2013).

    [2] T. A. Klar, R. Wollhofen, J. Jacak. Sub-Abbe resolution: from STED microscopy to STED lithography. Phys. Scr., T162, 014049(2014).

    [3] S. W. Hell. Microscopy and its focal switch. Nat. Methods, 6, 24-32(2009).

    [4] M. Elmeranta et al. Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy. Opt. Mater. Express, 6, 3169-3179(2016).

    [5] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [6] T. A. Klar et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A., 97, 8206-8210(2000).

    [7] K. I. Willig et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).

    [8] Z. Gan et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun., 4, 2061(2013).

    [9] J. Fischer et al. Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater., 3, 221-232(2015).

    [10] T. F. Scott et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science, 324, 913-917(2009).

    [11] J. Fischer, G. von Freymann, M. Wegener. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater., 22, 3578-3582(2010).

    [12] J. T. Fourkas. Nanoscale photolithography with visible light. J. Phys. Chem. Lett., 1, 1221-1227(2010).

    [13] J. Fischer, M. Wegener. Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography. Adv. Mater., 24, OP65-OP69(2012).

    [14] R. Wollhofen et al. Functional photoresists for sub-diffraction stimulated emission depletion lithography. Opt. Mater. Express, 7, 2538-2559(2017).

    [15] Y. Cao et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt. Express, 19, 19486-19494(2011).

    [16] X. He et al. STED direct laser writing of 45 nm width nanowire. Micromachines, 10, 726(2019).

    [17] J. Fischer, M. Wegener. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev., 7, 22-44(2013).

    [18] K. Sugioka et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip, 14, 3447-3458(2014).

    [19] K. Sugioka, Y. Cheng. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev., 1, 041303(2014).

    [20] L. Q. Tao et al. A flexible 360-degree thermal sound source based on laser induced graphene. Nanomaterials, 6, 112(2016).

    [21] C. Kachris, I. Tomkos. A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutorials, 14, 1021-1036(2012).

    [22] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008).

    [23] H. Zeng et al. High-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures. Adv. Mater., 26, 2319-2322(2014).

    [24] B. Buchegger et al. Stimulated emission depletion lithography with mercapto-functional polymers. ACS Nano, 10, 1954-1959(2016).

    [25] M. Deubel et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater., 3, 444-447(2004).

    [26] W. Gao et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol., 6, 496-500(2011).

    [27] Z.-L. Wu et al. Polymer-based device fabrication and applications using direct laser writing technology. Polymers, 11, 553(2019).

    [28] P. Mueller et al. Molecular switch for sub-diffraction laser lithography by photoenol intermediate-state cis–trans isomerization. ACS Nano, 11, 6396-6403(2017).

    [29] M. Wiesbauer et al. Nano-anchors with single protein capacity produced with STED lithography. Nano Lett., 13, 5672-5678(2013).

    [30] C. Wolfesberger et al. Streptavidin functionalized polymer nanodots fabricated by visible light lithography. J. Nanobiotechnol., 13, 27(2015).

    [31] S. K. Saha et al. Scalable submicrometer additive manufacturing. Science, 366, 105-109(2019).

    [32] K. Kataoka et al. Laser printer optics with use of slant scanning of multiple beams. Appl. Opt., 36, 6294-6307(1997).

    [33] X. Li et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica, 2, 567-570(2015).

    [34] J. Jin et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv. Mater. Technol., 2, 1600201(2017).

    [35] F. Formanek et al. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt. Express, 14, 800-809(2006).

    [36] J. I. Kato et al. Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett., 86, 044102(2005).

    [37] X. Z. Dong, Z. S. Zhao, X. M. Duan. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl. Phys. Lett., 91, 124103(2007).

    [38] S. D. Gittard et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express, 2, 3167-3178(2011).

    [39] W. Yan, B. P. Cumming, M. Gu. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing. J. Opt., 17, 075803(2015).

    [40] L. Yang et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Lasers Eng., 70, 26-32(2015).

    [41] Q. Geng et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun., 10, 2179(2019).

    [42] V. Hahn et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv. Funct. Mater., 30, 1907795(2020).

    [43] J. Miao, D. Sayre, H. N. Chapman. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A, 15, 1662-1669(1998).

    [44] S. G. Podorov, K. M. Pavlov, D. M. Paganin. A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. Opt. Express, 15, 9954-9962(2007).

    [45] M. O. Lenz et al. 3-D stimulated emission depletion microscopy with programmable aberration correction. J. Biophotonics, 7, 29-36(2014).

    [46] D. Zhu et al. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy. Opt. Commun., 405, 157-163(2017).

    [47] T. J. Gould et al. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express, 20, 20998-21009(2012).

    [48] S. Deng et al. Investigation of the influence of the aberration induced by a plane interface on STED microscopy. Opt. Express, 17, 1714-1725(2009).

    [49] C. Cao et al. Dip-in photoresist for photoinhibited two-photon lithography to realize high-precision direct laser writing on wafer. ACS Appl. Mater. Interfaces, 14, 31332-31342(2022).

    [50] T. Frenzel, M. Kadic, M. Wegener. Three-dimensional mechanical metamaterials with a twist. Science, 358, 1072-1074(2017).

    Dazhao Zhu, Liang Xu, Chenliang Ding, Zhenyao Yang, Yiwei Qiu, Chun Cao, Hongyang He, Jiawei Chen, Mengbo Tang, Lanxin Zhan, Xiaoyi Zhang, Qiuyuan Sun, Chengpeng Ma, Zhen Wei, Wenjie Liu, Xiang Fu, Cuifang Kuang, Haifeng Li, Xu Liu. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography[J]. Advanced Photonics, 2022, 4(6): 066002
    Download Citation