• Photonics Research
  • Vol. 10, Issue 5, 1202 (2022)
Yoon-Soo Jang1、2、7、†, Jinkang Lim1、3、†, Wenting Wang1, Seung-Woo Kim4, Anatoliy Savchenkov5, Andrey B. Matsko6, and Chee Wei Wong1、*
Author Affiliations
  • 1Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
  • 2Current address: Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
  • 3Current address: CACI-LGS Labs, Florham Park, New Jersey 07932, USA
  • 4Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • 5OEwaves Inc., Pasadena, California 91107, USA
  • 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
  • 7e-mail: ysj@kriss.re.kr
  • show less
    DOI: 10.1364/PRJ.449782 Cite this Article Set citation alerts
    Yoon-Soo Jang, Jinkang Lim, Wenting Wang, Seung-Woo Kim, Anatoliy Savchenkov, Andrey B. Matsko, Chee Wei Wong. Measurement of sub-fm/Hz1/2 displacement spectral densities in ultrahigh-Q single-crystal microcavities with hertz-level lasers[J]. Photonics Research, 2022, 10(5): 1202 Copy Citation Text show less
    References

    [1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102(2016).

    [2] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberg, P. Marin-Palmo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [3] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger. Self-cooling of a micromirror by radiation pressure. Nature, 444, 67-70(2006).

    [4] J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [5] Y.-C. Liu, X. Luan, Y.-F. Xiao, C. W. Wong. Dynamic dissipative cooling of a mechanical oscillator in strong-coupling optomechanics. Phys. Rev. Lett., 110, 153606(2013).

    [6] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [7] J. Cripe, N. Aggarwal, R. Lanza, A. Libson, R. Singh, P. Heu, D. Follman, G. D. Cole, N. Mavalvala, T. Corbitt. Measurement of quantum back action in the audio band at room temperature. Nature, 568, 364-367(2019).

    [8] Z. Wang, J. Lee, P. X.-L. Feng. Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators. Nat. Commun., 5, 5158(2014).

    [9] S. Groblacher, A. Trubarov, N. Prigge, G. D. Cole, M. Aspelmeter, J. Eisert. Observation of non-Markovian micromechanical Brownian motion. Nat. Commun., 6, 7606(2015).

    [10] R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, E. Verhagen. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nat. Commun., 8, 6024(2017).

    [11] F. J. Giessibl. Advances in atomic force microscopy. Rev. Mod. Phys., 75, 949-983(2003).

    [12] H. Haitjema, P. H. J. Schellekens, S. F. C. L. Wetzels. Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length. Metrologia, 37, 25-33(2000).

    [13] J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, C.-S. Kang. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt. Express, 14, 5968-5974(2006).

    [14] N. Bobroff. Recent advances in displacement measuring interferometry. Meas. Sci. Technol., 4, 907-926(1993).

    [15] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [16] J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics, 4, 716-720(2010).

    [17] S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, N. Bhattacharya. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 108, 183901(2012).

    [18] Y.-S. Jang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [19] Y.-S. Jang, G. Wang, S. Hyun, H. J. Kang, B. J. Chun, Y.-J. Kim, S.-W. Kim. Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep., 6, 31770(2016).

    [20] T. R. Schibli, K. Minoshima, Y. Bitou, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto. Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer. Opt. Express, 14, 5984-5993(2006).

    [21] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97-105(1983).

    [22] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).

    [23] M. Takamoto, F.-L. Hong, R. Higashi, H. Katori. An optical lattice clock. Nature, 435, 321-324(2005).

    [24] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, J. Ye. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, 506, 71-75(2014).

    [25] H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun., 4, 2468(2013).

    [26] J. Lim, A. A. Savchenkov, E. Dale, W. Liang, D. Eliyahu, V. Ilchenko, A. B. Matsko, L. Maleki, C. W. Wong. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun., 8, 8(2017).

    [27] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [28] J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala. Electro-optical frequency division and stable microwave synthesis. Science, 345, 309-313(2014).

    [29] W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [30] B. C. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, C. W. Wong. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).

    [31] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [32] Y. Li, Y. Li, S.-W. Huang, B. Li, H. Liu, J. Yang, A. K. Vinod, K. Wang, M. Yu, D.-L. Kwong, H. Wang, K. K.-Y. Wong, C. W. Wong. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 52(2020).

    [33] G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale. Probing the ultimate limit of fiber-optic strain sensing. Science, 330, 1081-1084(2010).

    [34] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett., 97, 133601(2006).

    [35] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 444, 71-74(2006).

    [36] G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, T. J. Kippenberg. Ultralow-dissipation optomechanical resonators on a chip. Nat. Photonics, 2, 627-633(2008).

    [37] J. Lim, A. A. Savchenkov, A. B. Matsko, S.-W. Huang, L. Maleki, C. W. Wong. Microresonator-stabilized extended-cavity diode laser for supercavity frequency stabilization. Opt. Lett., 42, 1249-1252(2017).

    [38] J. Lim, W. Liang, A. B. Matsko, L. Maleki, C. W. Wong. Probing 10 μK stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-Q optical resonators. Light Sci. Appl., 8, 1(2019).

    [39] K. Jung, J. Kim. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency. Opt. Lett., 40, 316-319(2015).

    [40] A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B, 24, 1324-1335(2007).

    [41] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki. Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt Soc. Am. B, 24, 2988-2997(2007).

    [42] J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hansch. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities. Phys. Rev. A, 77, 053809(2008).

    [43] Z. Li, W. Ma, W. Yang, Y. Wang, Y. Zheng. Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation. Opt. Lett., 41, 3331-3334(2016).

    [44] J. R. Lawall. Fabry–Perot metrology for displacements up to 50 mm. J. Opt. Soc. Am. A, 22, 2786-2798(2005).

    [45] M. Zhu, H. Wei, X. Wu, Y. Li. Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb. Opt. Laser Eng., 67, 128-134(2015).

    [46] M. Zhu, H. Wei, S. Zhao, X. Wu, Y. Li. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry–Perot interferometer. Appl. Opt., 54, 4594-4601(2015).

    [47] N. M. R. Hoque, L. Duan. Picostrain-resolution fiber-optic sensing down to sub-10 mHz infrasonic frequencies. J. Opt. Soc. Am. B, 37, 2773-2778(2020).

    Yoon-Soo Jang, Jinkang Lim, Wenting Wang, Seung-Woo Kim, Anatoliy Savchenkov, Andrey B. Matsko, Chee Wei Wong. Measurement of sub-fm/Hz1/2 displacement spectral densities in ultrahigh-Q single-crystal microcavities with hertz-level lasers[J]. Photonics Research, 2022, 10(5): 1202
    Download Citation