• Advanced Photonics
  • Vol. 5, Issue 5, 056003 (2023)
Hongya Wang1、2, Jianzhou Ai1、2, Zelin Ma3, Siddharth Ramachandran3, and Jian Wang1、2、*
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • 3Boston University, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.5.5.056003 Cite this Article Set citation alerts
    Hongya Wang, Jianzhou Ai, Zelin Ma, Siddharth Ramachandran, Jian Wang. Finding the superior mode basis for mode-division multiplexing: a comparison of spatial modes in air-core fiber[J]. Advanced Photonics, 2023, 5(5): 056003 Copy Citation Text show less
    References

    [1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [2] R. G. H. Van Uden et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 8, 865-870(2014).

    [3] G. Li et al. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics, 6, 413-487(2014).

    [4] R. Ryf et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol., 30, 521-531(2012).

    [5] D. Soma et al. 257-Tbit/s weakly coupled 10-mode C+L-band WDM transmission. J. Lightwave Technol., 36, 1375-1381(2018).

    [6] J. Li et al. Terabit mode division multiplexing discrete multitone signal transmission over OM2 multimode fiber. IEEE J. Sel. Top. Quantum Electron., 26, 4501308(2020).

    [7] F. Yaman et al. Long distance transmission in few-mode fibers. Opt. Express, 18, 13250-13257(2010).

    [8] L. Zhu et al. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Opt. Express, 24, 16934-16944(2016).

    [9] D. Soma et al. 10.16-peta-b/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band. J. Lightwave Technol., 36, 1362-1368(2018).

    [10] G. Milione et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 40, 1980-1983(2015).

    [11] Y. Zhao, J. Wang. High-base vector beam encoding/decoding for visible-light communications. Opt. Lett., 40, 4843-4846(2015).

    [12] L. Wang et al. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Opt. Express, 25, 11736-11749(2017).

    [13] J. Liu et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 7, 17148(2018).

    [14] J. Zhang et al. Fiber vector eigenmode multiplexing based high capacity transmission over 5-km FMF with Kramers–Kronig receiver. J. Lightwave Technol., 39, 4932-4938(2021).

    [15] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [16] A. D. Wang et al. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Opt. Express, 23, 29457-29466(2015).

    [17] A. D. Wang et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Opt. Express, 24, 11716-11726(2016).

    [18] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [19] S. Chen et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber. Sci. Rep., 6, 38181(2016).

    [20] J. Wang. Data information transfer using complex optical fields: a review and perspective. Chin. Opt. Lett., 15, 030005(2017).

    [21] K. Ingerslev et al. 12 mode, WDM, MIMO-free orbital angular momentum transmission. Opt. Express, 26, 20225-20232(2018).

    [22] L. Zhu et al. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Opt. Lett., 43, 1890-1893(2018).

    [23] G. X. Zhu et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Opt. Express, 26, 594-604(2018).

    [24] J. Wang. Twisted optical communications using orbital angular momentum. Sci. China Phys. Mech., 62, 034201(2019).

    [25] P. Gregg et al. Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing. Nat. Commun., 10, 4707(2019).

    [26] S. Chen et al. OAM mode multiplexing in weakly guiding ring-core fiber with simplified MIMO-DSP. Opt. Express, 27, 38049-38060(2019).

    [27] H. Y. Wang et al. Low-loss orbital angular momentum ring-core fiber design, fabrication and characterization. J. Lightwave Technol., 38, 6327-6333(2020).

    [28] J. Zhang et al. Mode division multiplexed transmission of WDM signals over 100-km single-span OAM fiber. Photonics Res., 8, 1236-1242(2020).

    [29] L. Zhu et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Opt. Express, 25, 25637-25645(2017).

    [30] S. Chen, J. Wang. Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre. Sci. Rep., 7, 3990(2017).

    [31] A. D. Wang et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express, 26, 10038-10047(2018).

    [32] J. Wang, S. Chen, J. Liu. Orbital angular momentum communications based on standard multimode fiber [Invited paper]. APL Photonics, 6, 060804(2021).

    [33] L. Wang et al. Deep learning based recognition of different mode bases in ring-core fiber. Laser Photonics Rev., 14, 2000249(2020).

    [34] E. Ip et al. SDM transmission of real-time 10GbE traffic using commercial SFP+ transceivers over 0.5 km elliptical-core few-mode fiber. Opt. Express, 23, 17120-17126(2015).

    [35] S. Chen, J. Wang. Fully degeneracy-lifted bow-tie elliptical ring-core multi-mode fiber. Opt. Express, 26, 18773-18782(2018).

    [36] L. Wang et al. MDM transmission of CAP-16 signals over 1.1-km elliptical-core few-mode fiber in passive optical networks. Opt. Express, 25, 22991-23002(2017).

    [37] H. Yan et al. Design of PANDA ring-core fiber with 10 polarization-maintaining modes. Photonics Res., 5, 1-5(2017).

    [38] S. Chen, J. Wang. Design of PANDA-type elliptical-core multimode fiber supporting 24 fully lifted eigenmodes. Opt. Lett., 43, 3718-3721(2018).

    [39] J. Zhao et al. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core. Photonics Res., 5, 261-266(2017).

    [40] S. Chen, J. Wang. Photonic crystal fibers supporting fully separated eigenmodes. Opt. Lett., 44, 3046-3049(2019).

    [41] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 2, 267-270(2015).

    [42] P. Gregg, P. Kristensen, S. Ramachandran. 13.4 km OAM state propagation by recirculating fiber loop. Opt. Express, 24, 18938-18947(2016).

    [43] Z. Ma et al. Robustness of OAM fiber modes to geometric perturbations, SW3K.1(2018).

    [44] Z. Ma, S. Ramachandran. Propagation stability in optical fibers role of path memory and angular momentum. Nanophotonics, 10, 209-224(2021).

    [45] A. Bjarklev. Microdeformation losses of single-mode fibers with step-index profiles. J. Lightwave Technol., 4, 341-346(1986).

    [46] R. Y. Chiao, Y.-S. Wu. Manifestations of Berry’s topological phase for the photon. Phys. Rev. Lett., 57, 993-996(1986).

    [47] A. Tomita, R. Y. Chiao. Observation of Berry’s topological phase by use of an optical fiber. Phys. Rev. Lett., 57, 937-940(1986).

    [48] K. Y. Bliokh. Geometrical optics of beams with vortices Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett., 97, 043901(2006).

    [49] G. C. G. Berkhout et al. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [50] M. Mirhosseini et al. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 4, 2781(2013).

    [51] C. Wan, J. Chen, Q. Zhan. Compact and high-resolution optical angular momentum sorter. APL Photonics, 2, 031302(2017).

    [52] Y. Wen et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 120, 193904(2018).

    [53] N. K. Fontaine et al. Laguerre–Gaussian mode sorter. Nat. Commun., 10, 1865(2019).

    [54] J. C. Fang et al. Optical orbital angular momentum multiplexing communication via inverse-designed multi-phase plane light conversion. Photonics Res., 10, 2015-2023(2022).

    [55] M. B. Shemirani et al. Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling. J. Lightwave Technol., 27, 1248-1261(2009).

    [56] J. Carpenter, B. J. Eggleton, J. Schröder. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photonics, 9, 751-757(2015).

    [57] J. Wang et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645-680(2022).

    [58] L. Zhu, A. D. Wang, J. Wang. Free-space data-carrying bendable light communications. Sci. Rep., 9, 14969(2019).

    [59] R. Z. Zhang et al. Turbulence-resilient pilot-assisted self-coherent free-space optical communications using automatic optoelectronic mixing of many modes. Nat. Photonics, 15, 743-750(2021).

    [60] Z. Y. Zhu et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun., 12, 1666(2021).

    [61] I. Nape et al. Revealing the invariance of vectorial structured light in complex media. Nat. Photonics, 16, 538-546(2022).

    [62] L. Fang et al. Spin-orbit mapping of light. Phys. Rev. Lett., 127, 233901(2021).

    [63] A. P. Greenberg, G. Prabhakar, S. Ramachandran. High resolution spectral metrology leveraging topologically enhanced optical activity in fibers. Nat. Commun., 11, 5257(2020).

    [64] J. Demas et al. Intermodal nonlinear mixing with Bessel beams in optical fiber. Optica, 2, 14-17(2015).

    [65] D. Stellinga et al. Time-of-flight 3D imaging through multimode optical fibers. Science, 374, 1395-1399(2021).

    [66] Z. Wan et al. Remote and robust measurement of the angular velocity vector based on vectorial Doppler effect using air-core optical fiber. Research, 2022, 9839502(2022).

    [67] J. Liu et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv., 6, eaay0837(2020).

    [68] Q. K. Wang et al. High-dimensional quantum cryptography with hybrid orbital-angular-momentum states through 25 km of ring-core fiber: a proof-of-concept demonstration. Phys. Rev. Appl., 15, 064034(2021).

    Hongya Wang, Jianzhou Ai, Zelin Ma, Siddharth Ramachandran, Jian Wang. Finding the superior mode basis for mode-division multiplexing: a comparison of spatial modes in air-core fiber[J]. Advanced Photonics, 2023, 5(5): 056003
    Download Citation