• Acta Optica Sinica
  • Vol. 40, Issue 1, 0111005 (2020)
Lei Zhu and Xiaopeng Shao*
Author Affiliations
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • show less
    DOI: 10.3788/AOS202040.0111005 Cite this Article Set citation alerts
    Lei Zhu, Xiaopeng Shao. Research Progress on Scattering Imaging Technology[J]. Acta Optica Sinica, 2020, 40(1): 0111005 Copy Citation Text show less
    References

    [1] Jiang W H. Adaptive optical technology[J]. Chinese Journal of Nature, 28, 7-13(2006).

    [2] Zhong W, Zhang X H, Guan F et al. Underwater full range-gated imaging radar based on high-repetition-rate pulse laser[J]. Chinese Journal of Lasers, 43, 1101009(2016).

    [3] Huang Z H, Li W, Yang K C et al. Underwater laser range-gated 3-D imaging method[J]. Laser & Infrared, 46, 1315-1319(2016).

    [4] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [5] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 59, 427-471(1996).

    [6] Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [7] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [8] Zhang H F, Maslov K, Stoica G et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 24, 848-851(2006).

    [9] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 3, 503-509(2009).

    [10] Ale A, Ermolayev V, Herzog E et al. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 9, 615-620(2012).

    [11] Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers[J]. Nature Protocols, 6, 1121-1129(2011).

    [12] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 7, 603-614(2010).

    [13] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [14] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [15] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 4, 320-322(2010).

    [16] Conkey D B, Brown A N. Caravaca-Aguirre A M, et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).

    [17] Blochet B, Bourdieu L, Gigan S. Fast wavefront optimization for focusing through biological tissue (conference presentation)[J]. Proceedings of SPIE, 10073, 100730T(2017).

    [18] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [19] Popoff M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).

    [20] Yang H, Huang Y H, Gong C M et al. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 7, 1-25(2014).

    [21] Freund I, Rosenbluh M, Feng S C. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).

    [22] Bertolotti J, van Putten E G, Blum C et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

    [23] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).

    [24] Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 4, 1209-1213(2017).

    [25] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [26] Derode A, Roux P, Fink M. Robust acoustic time reversal with high-order multiple scattering[J]. Physical Review Letters, 75, 4206-4209(1995).

    [27] Draeger C, Fink M. One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity[J]. Physical Review Letters, 79, 407-410(1997).

    [28] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 56, 523(1966).

    [29] Fink M, Prada C. Acoustic time-reversal mirrors[J]. Inverse problems, 17, R1-R38(2001).

    [30] Fisher R A[M]. Optical phase conjugation, 45-70(2012).

    [31] Voronin É S, Ivakhnik V V, Petnikova V M et al. Compensation for phase distortions by three-frequency parametric interaction[J]. Soviet Journal of Quantum Electronics, 9, 765-768(1979).

    [32] Bloom D M, Bjorklund G C. Conjugate wave-front generation and image reconstruction by four-wave mixing[J]. Applied Physics Letters, 31, 592-594(1977).

    [33] Yariv A, Pepper D M. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing[J]. Optics Letters, 1, 16-18(1977).

    [34] Králiková B, Skála J, Straka P et al. Image restoration in a highly non-steady-state regime of stimulated Brillouin scattering in a photodissociation iodine laser[J]. Optics Letters, 22, 766-768(1997).

    [35] Karaguleff C, Clark G L. Optical aberration correction by real-time holography in liquid crystals[J]. Optics Letters, 15, 820-822(1990).

    [36] Paurisse M, Hanna M, Druon F et al. Phase and amplitude control of a multimode LMA fiber beam by use of digital holography[J]. Optics Express, 17, 13000-13008(2009).

    [37] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).

    [38] Lhermite J, Suran E, Kermene V et al. Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light modulator[J]. Optics Express, 18, 4783-4789(2010).

    [39] van Putten E G, Akbulut D, Bertolotti J et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 106, 193905(2011).

    [40] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 36, 870-872(2011).

    [41] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 6, 549-553(2012).

    [42] Park J H, Yu Z, Lee K R et al. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 3, 100901(2018).

    [43] Lemoult F. Lerosey G, de Rosny J, et al. Manipulating spatiotemporal degrees of freedom of waves in random media[J]. Physical Review Letters, 103, 173902(2009).

    [44] Lerosey G, de Rosny J, Tourin A et al. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 315, 1120-1122(2007).

    [45] Kogelnik H, Pennington K S. Holographic imaging through a random medium[J]. Journal of the Optical Society of America, 58, 273-274(1968).

    [46] Sheng P[M]. Introduction to wave scattering, localization, and mesoscopic phenomena, 18-35(1995).

    [47] Choi Y, Yang T D, Fang-Yen C et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 107, 023902(2011).

    [48] Drémeau A, Liutkus A, Martina D et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 23, 11898-11911(2015).

    [49] Yoon J, Lee K, Park J et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 23, 10158-10167(2015).

    [50] Tripathi S, Paxman R, Bifano T et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 20, 16067-16076(2012).

    [51] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).

    [52] Mounaix M, Andreoli D, Defienne H et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 116, 253901(2016).

    [53] Dong J, Krzakala F, Gigan S. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media. [C]∥ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 12-17, 2019, Brighton, United Kingdom. New York: IEEE, 4963-4967(2019).

    [54] Park H, Crozier K B. Multispectral imaging with vertical silicon nanowires[J]. Scientific Reports, 3, 2460(2013).

    [55] Stewart J W, Akselrod G M, Smith D R et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 29, 1602971(2017).

    [56] Holekamp T F, Turaga D, Holy T E. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy[J]. Neuron, 57, 661-672(2008).

    [57] Pégard N C, Liu H Y, Antipa N et al. Compressive light-field microscopy for 3D neural activity recording[J]. Optica, 3, 517-524(2016).

    [58] Akkermans E, Montambaux G[M]. Mesoscopic physics of electrons and photons, 35-45(2007).

    [59] Goodman J W. Speckle phenomena in optics: theory and applications[M]. USA: Roberts and Company Publishers, 15-70(2007).

    [60] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).

    [61] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [62] Wu T F, Katz O, Shao X P et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 41, 5003-5006(2016).

    [63] Lohmann A W, Weigelt G, Wirnitzer B. Speckle masking in astronomy: triple correlation theory and applications[J]. Applied Optics, 22, 4028-4037(1983).

    [64] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 3, 71-74(2016).

    [65] Singh A K, Naik D N, Pedrini G et al. Looking through a diffuser and around an opaque surface: a holographic approach[J]. Optics Express, 22, 7694-7701(2014).

    [66] Yang W Q, Li G W, Guohai S T. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 8, 9614(2018).

    [67] Wang X Y, Jin X, Li J Q et al. Prior-information-free single-shot scattering imaging beyond the memory effect[J]. Optics Letters, 44, 1423-1426(2019).

    [68] Jin X, Wang Z P, Wang X Y et al. Depth of field extended scattering imaging by light field estimation[J]. Optics Letters, 43, 4871-4874(2018).

    [69] Liao M H, Lu D J, Pedrini G et al. Extending the depth-of-field of imaging systems with a scattering diffuser[J]. Scientific Reports, 9, 7165(2019).

    [70] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [71] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 60, 259-268(1992).

    [72] Brady D J, Choi K, Marks D L et al. Compressive holography[J]. Optics Express, 17, 13040-13049(2009).

    [73] Mukherjee S, Vijayakumar A, Kumar M et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 8, 1134(2018).

    [74] Shi Y Y, Liu Y W, Wang J M et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 110, 231101(2017).

    [75] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 6, 33558(2016).

    [76] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 62, 55-59(1972).

    [77] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 79, 745-754(1974).

    [78] Wu T F, Dong J, Shao X P et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity[J]. Optics Express, 25, 27182-27194(2017).

    [79] Antipa N, Kuo G, Heckel R et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 5, 1-9(2018).

    [80] Liao M H, He W Q, Lu D J et al. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium[J]. Scientific Reports, 7, 41789(2017).

    [81] Li G W, Yang W Q, Li D Y et al. Cyphertext-only attack on the double random-phase encryption: experimental demonstration[J]. Optics Express, 25, 8690-8697(2017).

    [82] Wu P F, Liang Z, Zhao X et al. Lensless wide-field single-shot imaging through turbid media based on object-modulated speckles[J]. Applied Optics, 56, 3335-3341(2017).

    [83] Takasaki K T, Fleischer J W. Phase-space measurement for depth-resolved memory-effect imaging[J]. Optics Express, 22, 31426-31433(2014).

    [84] Li G, Yang W, Wang H et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 9, 849(2019).

    [85] Singh A K, Naik D N, Pedrini G et al. Exploiting scattering media for exploring 3D objects[J]. Light: Science & Applications, 6, e16219(2017).

    [86] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).

    [87] Yilmaz H, van Putten E G, Bertolotti J et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging[J]. Optica, 2, 424-429(2015).

    Lei Zhu, Xiaopeng Shao. Research Progress on Scattering Imaging Technology[J]. Acta Optica Sinica, 2020, 40(1): 0111005
    Download Citation