• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0212008 (2025)
Xiang Long*, Huajie Chen, Haoyu Wu, and Di Yu
Author Affiliations
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang , China
  • show less
    DOI: 10.3788/LOP241156 Cite this Article Set citation alerts
    Xiang Long, Huajie Chen, Haoyu Wu, Di Yu. Strong Interference Target Detection on the Sea Surface Based on Feature Augmentation[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212008 Copy Citation Text show less
    References

    [1] Zhou Y, Daamen W, Vellinga T et al. Review of maritime traffic models from vessel behavior modeling perspective[J]. Transportation Research Part C: Emerging Technologies, 105, 323-345(2019).

    [2] Serra M, Sathe P, Rypina I et al. Search and rescue at sea aided by hidden flow structures[J]. Nature Communications, 11, 2525(2020).

    [3] Ng C T, Cheng T C E, Levner E et al. Optimal bi-criterion planning of rescue and evacuation operations for marine accidents using an iterative scheduling algorithm[J]. Annals of Operations Research, 296, 407-420(2021).

    [4] Ho W C, Shen J H, Liu C P et al. Research on optimal model of maritime search and rescue route for rescue of multiple distress targets[J]. Journal of Marine Science and Engineering, 10, 460(2022).

    [5] Wang Y L, Zhang S X, Lu C F et al. Research on thermal infrared imaging and positioning technology for emergency rescue at sea in bad weather[J]. Journal of Physics: Conference Series, 2560, 012041(2023).

    [6] Chen X, Jiang W Y, Qi H G et al. Adaptive meta-knowledge transfer network for few-shot object detection in very high resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 127, 103675(2024).

    [7] Liu H T, Ge J Y, Wang Y et al. Multi-UAV optimal mission assignment and path planning for disaster rescue using adaptive genetic algorithm and improved artificial bee colony method[J]. Actuators, 11, 4(2021).

    [8] Yang T T, Jiang Z, Sun R J et al. Maritime search and rescue based on group mobile computing for unmanned aerial vehicles and unmanned surface vehicles[J]. IEEE Transactions on Industrial Informatics, 16, 7700-7708(2020).

    [9] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [10] Zhao X F, Xia Y T, Zhang W W et al. YOLO-ViT-based method for unmanned aerial vehicle infrared vehicle target detection[J]. Remote Sensing, 15, 3778(2023).

    [11] Wang Y M, Zou H, Yin M et al. SMFF-YOLO: a scale-adaptive YOLO algorithm with multi-level feature fusion for object detection in UAV scenes[J]. Remote Sensing, 15, 4580(2023).

    [12] Cao J S, Bao W S, Shang H X et al. GCL-YOLO: a GhostConv-based lightweight YOLO network for UAV small object detection[J]. Remote Sensing, 15, 4932(2023).

    [13] Song Z Z, Yang J W, Zhang D F et al. Low-altitude sea surface infrared object detection based on unsupervised domain adaptation[J]. Acta Optica Sinica, 42, 0415001(2022).

    [14] Li Y S, Zhao H J, Li N et al. Detection of marine targets covered in sun glint based on mid-infrared polarization[J]. Chinese Journal of Lasers, 49, 1910004(2022).

    [15] Zhu H Q, Qu H S. Adaptive suppression system of sea background flare[J]. Acta Optica Sinica, 42, 1201006(2022).

    [16] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).

    [17] Zhang J, Zhang H Y, Liu B W et al. Small object intelligent detection method based on adaptive recursive feature pyramid[J]. Heliyon, 9, e17730(2023).

    [18] Feng C J, Zhong Y J, Gao Y et al. Tood: task-aligned one-stage object detection[C], 3490-3499(2021).

    [19] Li X, Wang W H, Wu L J et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C], 1763(2020).

    [20] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[EB/OL]. https://arxiv.org/abs/1706.03762

    [21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [22] Zhang Q L, Yang Y B. SA-net: shuffle attention for deep convolutional neural networks[C], 2235-2239(2021).

    [23] Zhang X Y, Zhou X Y, Lin M X et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C], 6848-6856(2018).

    [24] Ga̧sienica-Józkowy J, Knapik M, Cyganek B. An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance[J]. Integrated Computer-Aided Engineering, 28, 221-235(2021).

    [25] Varga L A, Kiefer B, Messmer M et al. SeaDronesSee: a maritime benchmark for detecting humans in open water[C], 3686-3696(2022).

    [26] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [27] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [28] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767

    [29] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934

    [30] Ge Z, Liu S T, Wang F et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430

    [31] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. https://arxiv.org/abs/2207.02696

    [32] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    [33] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points[EB/OL]. https://arxiv/org/abs/1904.07850

    [34] Zhao Y, Lü W, Xu S et al. Detrs beat yolos on real-time object detection[EB/OL]. https://arxiv.org/abs/2304.08069

    [35] Ouyang D L, He S, Zhang G Z et al. Efficient multi-scale attention module with cross-spatial learning[C](2023).

    [36] Yang L, Zhang R Y, Li L et al. SimAm: a simple, parameter-free attention module for convolutional neural networks[C], 11863-11874(2021).

    [37] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).

    [38] Liu Y C, Shao Z R, Hoffmann N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. https://arxiv.org/abs/2112.05561

    [39] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Computer vision-ECCV 2018, 11211, 3-19(2018).

    Xiang Long, Huajie Chen, Haoyu Wu, Di Yu. Strong Interference Target Detection on the Sea Surface Based on Feature Augmentation[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212008
    Download Citation