• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0212008 (2025)
Xiang Long*, Huajie Chen, Haoyu Wu, and Di Yu
Author Affiliations
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang , China
  • show less
    DOI: 10.3788/LOP241156 Cite this Article Set citation alerts
    Xiang Long, Huajie Chen, Haoyu Wu, Di Yu. Strong Interference Target Detection on the Sea Surface Based on Feature Augmentation[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212008 Copy Citation Text show less
    Structure of YOLOv8 network
    Fig. 1. Structure of YOLOv8 network
    Overall structure of TFF module
    Fig. 2. Overall structure of TFF module
    Structure of TS-YOLOv8 network
    Fig. 3. Structure of TS-YOLOv8 network
    Partial images in datasets
    Fig. 4. Partial images in datasets
    Variation trend of mAP50. (a) On the AFO dataset; (b) on the SeaDronesSee dataset
    Fig. 5. Variation trend of mAP50. (a) On the AFO dataset; (b) on the SeaDronesSee dataset
    Comparison of detection results and heatmaps on the AFO test set by baseline model and proposed model. (a) Input images; (b)‒(c) detection results; (d)‒(e) heatmaps
    Fig. 6. Comparison of detection results and heatmaps on the AFO test set by baseline model and proposed model. (a) Input images; (b)‒(c) detection results; (d)‒(e) heatmaps
    Comparison of detection results and heatmaps on the SeaDronesSee test set by baseline model and proposed model. (a) Input images; (b)‒(c) detection results; (d)‒(e) heatmaps
    Fig. 7. Comparison of detection results and heatmaps on the SeaDronesSee test set by baseline model and proposed model. (a) Input images; (b)‒(c) detection results; (d)‒(e) heatmaps
    ParameterConfiguration
    Python version3.11
    PyTorch version2.0.0
    CUDA version11.7
    Learning rate0.01
    OptimizerStochastic gradient descent (SGD)
    Batch size16
    Epoch100
    Momentum0.937
    Weight decay5×10-4
    Table 1. Configuration and parameters setting for experiment
    AlgorithmParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%FPS /(frame·s-1
    Faster RCNN136.79369.8442.9647.9741.0117.3917
    SSD24.2861.2572.2619.9644.1022.2639
    YOLOv361.5565.6383.7046.1253.9920.6935
    YOLOv463.9759.9968.2820.8235.7913.8062
    YOLOv546.17108.3194.0151.0157.8331.6973
    YOLOX54.15155.6994.3175.2676.2646.1069
    YOLOv737.22105.2087.4076.7684.8844.8081
    RetinaNet36.43146.9177.6928.0635.2419.3671
    CenterNet32.6770.2290.8952.0261.7128.8982
    RT-DETR42.31136.7489.4583.7988.0947.68108
    YOLOv811.6428.4390.184.6989.5453.67114
    TS-YOLOv812.1729.0694.5491.5695.1461.05110
    Table 2. Overall performance of different algorithms on the AFO dataset
    AlgorithmAP50mAP50
    HumanBoardBoatBuoySailboatKayak
    Faster RCNN19.2669.3245.7834.0177.6941.01
    SSD22.1287.8331.8310.0634.1378.6344.10
    YOLOv362.1187.9230.3430.0831.1182.4053.99
    YOLOv432.4978.5412.9028.7062.1335.79
    YOLOv582.0497.9046.5316.6515.8088.0557.83
    YOLOX91.4398.8858.1086.2034.6988.2376.26
    YOLOv782.7298.7268.4079.3480.8899.2484.88
    RetinaNet4.2974.3637.7233.7961.2635.24
    CenterNet65.5482.3855.0245.8533.5687.9361.71
    RT-DETR84.7898.2677.5184.1884.9298.7988.07
    YOLOv882.7598.1980.6488.1887.9299.5489.54
    TS-YOLOv889.8299.1491.5494.4896.2899.6095.14
    Table 3. AP of each category in the AFO dataset detected by different algorithms
    ModelParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%
    YOLOv811.6428.4390.1084.6989.5453.67
    YOLOv8+EMA11.6428.4091.0785.7989.7553.69
    YOLOv8+SimAM11.6428.4391.2985.3090.0655.01
    YOLOv8+CA11.7528.9190.9585.9090.1854.92
    YOLOv8+GAM11.7128.7790.1084.9789.6653.70
    YOLOv8+CBAM11.6428.5392.1086.3691.0955.15
    YOLOv8+SA11.6428.4391.9187.0291.4555.74
    Table 4. Comparison of different attention mechanisms
    YOLOv8TFFSAParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%FPS /(frame·s-1
    11.6428.4390.1084.6989.5453.67114
    12.1729.0692.3588.6193.4659.79112
    11.6428.4391.9187.0291.4555.74112
    12.1729.0694.5491.5695.1461.05110
    Table 5. Overall performance of each ablation algorithm on the AFO dataset
    YOLOv8TFFSAAP50mAP50
    HumanBoardBoatBuoySailboatKayak
    82.7599.1980.6478.1890.9299.5489.54
    88.2799.2992.5286.6094.4999.5693.46
    87.0998.4887.2784.3591.9899.5391.45
    89.8299.1491.5494.4896.2899.6095.14
    Table 6. AP of each category in AFO dataset detected by each ablation algorithm
    YOLOv8TFFSAParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%FPS /(frame·s-1
    11.6428.4388.4282.8286.8757.61110
    12.1729.0690.3786.1490.0961.91107
    11.6428.4388.9385.7588.7159.47108
    12.1729.0691.6687.5991.3463.53106
    Table 7. Overall performance of each ablation algorithm on the SeaDronesSee dataset
    YOLOv8TFFSAAP50mAP50
    SwimmerBoatJetskiLife jacketBuoy
    80.1592.6390.7681.0189.8086.87
    85.7594.1392.9385.0892.5690.09
    83.9993.4991.8683.0591.1688.71
    87.0495.4194.6086.3893.2791.34
    Table 8. AP of each category in SeaDronesSee dataset detected by each ablation algorithm
    Xiang Long, Huajie Chen, Haoyu Wu, Di Yu. Strong Interference Target Detection on the Sea Surface Based on Feature Augmentation[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212008
    Download Citation