• Opto-Electronic Advances
  • Vol. 4, Issue 4, 210022-1 (2021)
Xiaotong Fan1, Tingzhu Wu1、2, Bin Liu3, Rong Zhang1、3, Hao-Chung Kuo4、*, and Zhong Chen1、2
Author Affiliations
  • 1School of Electronic Science and Engineering, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
  • 2Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Xiamen 361005, China
  • 3Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
  • 4Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Chiao Tung University, Hsinchu 30010, China.
  • show less
    DOI: 10.29026/oea.2021.210022 Cite this Article
    Xiaotong Fan, Tingzhu Wu, Bin Liu, Rong Zhang, Hao-Chung Kuo, Zhong Chen. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism[J]. Opto-Electronic Advances, 2021, 4(4): 210022-1 Copy Citation Text show less
    References

    [1] P Pust, PJ Schmidt, W Schnick. A revolution in lighting. Nat Mater, 14, 454-458(2015).

    [2] S Reineke. Complementary LED technologies. Nat Mater, 14, 459-462(2015).

    [3] HX Jiang, SX Jin, J Li, J Shakya, JY Lin. III-nitride blue microdisplays. Appl Phys Lett, 78, 1303-1305(2001).

    [4] SX Jin, J Li, JY Lin, HX Jiang. InGaN/GaN quantum well interconnected microdisk light emitting diodes. Appl Phys Lett, 77, 3236-3238(2000).

    [5] SX Jin, J Li, JZ Li, JY Lin, HX Jiang. GaN microdisk light emitting diodes. Appl Phys Lett, 76, 631-633(2000).

    [6] TZ Wu, CW Sher, Y Lin, CF Lee, F Liang, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci, 8, 1557(2018).

    [7] ZJ Liu, CH Lin, BR Hyun, CW Sher, ZJ Lv, et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl, 9, 83(2020).

    [8] YM Yin, ZP Hu, MU Ali, M Duan, L Gao, et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv Mater Technol, 5, 2000251(2020).

    [9] YG Huang, EL Hsiang, MY Deng, ST Wu. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci Appl, 9, 105(2020).

    [10] XJ Zhou, PF Tian, CW Sher, J Wu, HZ Liu, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quant Electron, 71, 100263(2020).

    [11] YJ Hong, CH Lee, A Yoon, M Kim, HK Seong, et al. Visible-color-tunable light-emitting diodes. Adv Mater, 23, 3284-3288(2011).

    [12] SWH Chen, YM Huang, KJ Singh, YC Hsu, FJ Liou, et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res, 8, 630-636(2020).

    [13] FW Gou, EL Hsiang, GJ Tan, YF Lan, CY Tsai, et al. Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array. Crystals, 9, 39(2019).

    [14] CK Jeong, KI Park, JH Son, GT Hwang, SH Lee, et al. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ Sci, 7, 4035-4043(2014).

    [15] K Ding, V Avrutin, N Izyumskaya, Ü Özgür, H Morkoç. Micro-LEDs, a manufacturability perspective. Appl Sci, 9, 1206(2019).

    [16] K Wang, YX Du, J Liang, JY Zhao, FF Xu, et al. Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv Mater, 32, 2001999(2020).

    [17] WH Mei, ZQ Zhang, AD Zhang, D Li, XY Zhang, et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res, 13, 2485-2491(2020).

    [18] Y Shirasaki, GJ Supran, MG Bawendi, V Bulović. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics, 7, 13-23(2013).

    [19] SJ Ho, HC Hsu, CW Yeh, HS Chen. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays. ACS Appl Mater Interfaces, 12, 33346-33351(2020).

    [20] T Kim, KH Kim, S Kim, SM Choi, H Jang, et al. Efficient and stable blue quantum dot light-emitting diode. Nature, 586, 385-389(2020).

    [21] H Sekiguchi, K Kishino, A Kikuchi. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett, 96, 231104(2010).

    [22] HY Lin, CW Sher, DH Hsieh, XY Chen, HMP Chen, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res, 5, 411-416(2017).

    [23] HS Chen, CK Hsu, HY Hong. InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photon Technol Lett, 18, 193-195(2006).

    [24] BZ Zhou, MJ Liu, YW Wen, Y Li, R Chen. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv, 3, 190043(2020).

    [25] JJ Rindermann, G Pozina, B Monemar, L Hultman, H Amano, et al. Dependence of resonance energy transfer on exciton dimensionality. Phys Rev Lett, 107, 236805(2011).

    [26] AR Clapp, IL Medintz, H Mattoussi. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem, 7, 47-57(2006).

    [27] HV Han, HY Lin, CC Lin, WC Chong, JR Li, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt Express, 23, 32504-32515(2015).

    [28] F Zhang, J Liu, GJ You, CF Zhang, SE Mohney, et al. Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Opt Express, 20, A333-A339(2012).

    [29] S Chanyawadee, PG Lagoudakis, RT Harley, MDB Charlton, DV Talapin, et al. Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer. Adv Mater, 22, 602-606(2010).

    [30] SW Wang, KB Hong, YL Tsai, CH Teng, AJ Tzou, et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci Rep, 7, 42962(2017).

    [31] G Itskos, G Heliotis, PG Lagoudakis, J Lupton, NP Barradas, et al. Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga, In)N quantum well/polyfluorene semiconductor heterostructures. Phys Rev B, 76, 035344(2007).

    [32] Š Kos, M Achermann, VI Klimov, DL Smith. Different regimes of Förster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals. Phys Rev B, 71, 205309(2005).

    [33] IL Medintz, AR Clapp, JS Melinger, JR Deschamps, H Mattoussi. A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer. Adv Mater, 17, 2450-2455(2005).

    [34] G Heliotis, G Itskos, R Murray, MD Dawson, IM Watson, et al. Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Adv Mater, 18, 334-338(2006).

    [35] M Achermann, MA Petruska, S Kos, DL Smith, DD Koleske, et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature, 429, 642-646(2004).

    [36] M Achermann, MA Petruska, DD Koleske, MH Crawford, VI Klimov. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett, 6, 1396-1400(2006).

    [37] JV Vaghasiya, KK Sonigara, L Suresh, M Panahandeh-Fard, SS Soni, et al. Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples. Nano Energy, 60, 457-466(2019).

    [38] H Sahoo. Förster resonance energy transfer – a spectroscopic nanoruler: principle and applications. J Photochem Photobiol C, 12, 20-30(2011).

    [39] C Krishnan, T Mercier, T Rahman, G Piana, M Brossard, et al. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting. Nanoscale, 11, 18837-18844(2019).

    [40] PF Tian, JJD McKendry, Z Gong, B Guilhabert, IM Watson, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl Phys Lett, 101, 231110(2012).

    [41] F Olivier, A Daami, C Licitra, F Templier. Shockley-read-hall and auger non-radiative recombination in GaN based LEDs: a size effect study. Appl Phys Lett, 111, 022104(2017).

    [42] IS Kim, ABF Martinson. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. J Mater Chem A, 3, 20092-20096(2015).

    [43] JP Richters, T Voss, DS Kim, R Scholz, M Zacharias. Enhanced surface-excitonic emission in ZnO/Al2O3 core-shell nanowires. Nanotechnology, 19, 305202(2008).

    [44] MS Wong, D Hwang, AI Alhassan, C Lee, R Ley, et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt Express, 26, 21324-21331(2018).

    [45] MS Wong, JA Kearns, C Lee, JM Smith, C Lynsky, et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt Express, 28, 5787-5793(2020).

    [46] Chen Huang, CC Shen, TZ Wu, ZY Liao, LF Chen, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res, 7, 416-422(2019).

    [47] CY Liu, TP Chen, TS Kao, JK Huang, HC Kuo, et al. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes. Opt Express, 24, 19978-19987(2016).

    [48] S Ghataora, RM Smith, M Athanasiou, T Wang. Electrically injected hybrid organic/inorganic III-nitride white light-emitting diodes with nonradiative Förster resonance energy transfer. ACS Photonics, 5, 642-647(2018).

    [49] JH Kang, BJ Li, TS Zhao, MA Johar, CC Lin, et al. RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots. ACS Appl Mater Interfaces, 12, 30890-30895(2020).

    [50] C Krishnan, M Brossard, KY Lee, JK Huang, CH Lin, et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica, 3, 503-509(2016).

    [51] Z Zhuang, X Guo, B Liu, FR Hu, Y Li, et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater, 26, 36-43(2016).

    [52] QG Zhang, B Wang, WL Zheng, L Kong, Q Wan, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat Commun, 11, 31(2020).

    Xiaotong Fan, Tingzhu Wu, Bin Liu, Rong Zhang, Hao-Chung Kuo, Zhong Chen. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism[J]. Opto-Electronic Advances, 2021, 4(4): 210022-1
    Download Citation