• Photonics Research
  • Vol. 9, Issue 2, 151 (2021)
Jing Chen1, Chao Zhang1, Xiaolin Liu1, Lin Peng1, Jia Lin1、*, and Xianfeng Chen2、3
Author Affiliations
  • 1Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.1364/PRJ.410290 Cite this Article Set citation alerts
    Jing Chen, Chao Zhang, Xiaolin Liu, Lin Peng, Jia Lin, Xianfeng Chen. Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra[J]. Photonics Research, 2021, 9(2): 151 Copy Citation Text show less
    References

    [1] M.-G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N. P. Padture, X. C. Zeng. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2, 1231-1241(2018).

    [2] X. Zhou, J. Jankowska, H. Dong, O. V. Prezhdo. Recent theoretical progress in the development of perovskite photovoltaic materials. J. Energy Chem., 27, 637-649(2018).

    [3] J. Yang, B. D. Siempelkamp, D. Liu, T. L. Kelly. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 9, 1955-1963(2015).

    [4] T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, B.-J. Hwang. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci., 9, 323-356(2016).

    [5] Y. Yang, J. You. Make perovskite solar cells stable. Nature, 544, 155-156(2017).

    [6] Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A, 3, 8139-8147(2015).

    [7] S. Chen, Y. Zhang, X. Zhang, J. Zhao, Z. Zhao, X. Su, Z. Hua, J. Zhang, J. Cao, J. Feng. General decomposition pathway of organic–inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism. Adv. Mater., 32, 2001107(2020).

    [8] Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, J. Chen. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2, 1356-1368(2018).

    [9] A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc., 138, 2138-2141(2016).

    [10] J. Duan, Y. Zhao, B. He, Q. Tang. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angew. Chem. (Int. Ed.), 57, 3787-3791(2018).

    [11] F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc., 140, 12989-12995(2018).

    [12] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519-522(2015).

    [13] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater., 26, 1584-1589(2014).

    [14] S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 5, 1035-1039(2014).

    [15] X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 13, 1603996(2017).

    [16] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater., 27, 7101-7108(2015).

    [17] J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett., 12, 2362-2366(2012).

    [18] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett., 15, 5635-5640(2015).

    [19] Q. Shan, J. Song, Y. Zou, J. Li, L. Xu, J. Xue, Y. Dong, B. Han, J. Chen, H. Zeng. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small, 13, 1701770(2017).

    [20] Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, G. Du. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett., 17, 313-321(2017).

    [21] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun., 6, 8056(2015).

    [22] L. N. Quan, F. P. García de Arquer, R. P. Sabatini, E. H. Sargent. Perovskites for light emission. Adv. Mater., 30, 1801996(2018).

    [23] Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano, 12, 1462-1472(2018).

    [24] J. Lin, M. Lai, L. Dou, C. S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S. A. Hawks, C. Xie, F. Cui, A. P. Alivisatos, D. T. Limmer, P. Yang. Thermochromic halide perovskite solar cells. Nat. Mater., 17, 261-267(2018).

    [25] T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, X. Y. Zhu. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 6, 1700982(2018).

    [26] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics, 10, 699-704(2016).

    [27] H. Shi, X. Zhang, X. Sun, R. Chen, X. Zhang. Direct and indirect recombination and thermal kinetics of excitons in colloidal all-inorganic lead halide perovskite nanocrystals. J. Phys. Chem. C, 123, 19844-19850(2019).

    [28] B. Yang, J. Chen, S. Yang, F. Hong, L. Sun, P. Han, T. Pullerits, W. Deng, K. Han. Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. (Int. Ed.), 130, 5457-5461(2018).

    [29] L. Zhou, J.-F. Liao, Z.-G. Huang, X.-D. Wang, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su. All-inorganic lead-free Cs2PdX6 (X= Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett., 3, 2613-2619(2018).

    [30] V. D’Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc., 136, 17730-17733(2014).

    [31] B. Dänekamp, N. Droseros, F. Palazon, M. Sessolo, N. Banerji, H. J. Bolink. Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Appl. Mater. Interfaces, 10, 36187-36193(2018).

    [32] S. B. Naghadeh, B. Luo, Y.-C. Pu, Z. Schwartz, W. R. Hollingsworth, S. A. Lindley, A. S. Brewer, A. L. Ayzner, J. Z. Zhang. Size dependence of charge carrier dynamics in organometal halide perovskite nanocrystals: deciphering radiative versus nonradiative components. J. Phys. Chem. C, 123, 4610-4619(2019).

    [33] B. A. Koscher, J. K. Swabeck, N. D. Bronstein, A. P. Alivisatos. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc., 139, 6566-6569(2017).

    [34] V. S. Chirvony, S. González-Carrero, I. Suárez, R. E. Galian, M. Sessolo, H. J. Bolink, J. P. Martínez-Pastor, J. Pérez-Prieto. Delayed luminescence in lead halide perovskite nanocrystals. J. Phys. Chem. C, 121, 13381-13390(2017).

    [35] M. A. Becker, L. Scarpelli, G. Nedelcu, G. Rainò, F. Masia, P. Borri, T. Stöferle, M. V. Kovalenko, W. Langbein, R. F. Mahrt. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Lett., 18, 7546-7551(2018).

    [36] J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc., 140, 3626-3634(2018).

    [37] Y. Yamada, T. Yamada, A. Shimazaki, A. Wakamiya, Y. Kanemitsu. Interfacial charge-carrier trapping in CH3NH3PbI3-based heterolayered structures revealed by time-resolved photoluminescence spectroscopy. J. Phys. Chem. Lett., 7, 1972-1977(2016).

    [38] A. Marchioro, P. J. Whitham, H. D. Nelson, M. C. De Siena, K. E. Knowles, V. Z. Polinger, P. J. Reid, D. R. Gamelin. Strong dependence of quantum-dot delayed luminescence on excitation pulse width. J. Phys. Chem. Lett., 8, 3997-4003(2017).

    [39] X. Yuan, S. Ji, M. C. De Siena, L. Fei, Z. Zhao, Y. Wang, H. Li, J. Zhao, D. R. Gamelin. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration. Chem. Mater., 29, 8003-8011(2017).

    [40] P. Strak, K. Koronski, K. Sakowski, K. Sobczak, J. Borysiuk, K. P. Korona, P. A. Drozdz, E. Grzanka, M. Sarzynski, A. Suchocki, E. Monroy, S. Krukowski, A. Kaminska. Instantaneous decay rate analysis of time resolved photoluminescence (TRPL): application to nitrides and nitride structures. J. Alloys Compd., 823, 153791(2020).

    [41] C. M. Sutter-Fella, Y. Li, M. Amani, J. W. Ager, F. M. Toma, E. Yablonovitch, I. D. Sharp, A. Javey. High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett., 16, 800-806(2016).

    [42] M. S. Hajime Shibata, A. Yamada, K. Matsubara, K. Sakurai, H. Tampo, S. Ishizuka, K.-K. Kim, S. Niki. Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys., 44, 6113-6114(2005).

    [43] M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann. Correlated electron–hole plasma in organometal perovskites. Nat. Commun., 5, 5049(2014).

    [44] Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, Y. Chan. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett., 18, 4976-4984(2018).

    [45] D. Bimberg, M. Sondergeld, E. Grobe. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs. Phys. Rev. B, 4, 3451-3455(1971).

    [46] L. Jiang, Z. Fang, H. Lou, C. Lin, Z. Chen, J. Li, H. He, Z. Ye. Achieving long carrier lifetime and high optical gain in all-inorganic CsPbBr3 perovskite films via top and bottom surface modification. Phys. Chem. Chem. Phys., 21, 21996-22001(2019).

    [47] Z. Liu, Q. Shang, C. Li, L. Zhao, Y. Gao, Q. Li, J. Chen, S. Zhang, X. Liu, Y. Fu, Q. Zhang. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Appl. Phys. Lett., 114, 101902(2019).

    [48] Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, Q. Zhang. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 20, 6636-6643(2020).

    [49] W. Xu, F. He, M. Zhang, P. Nie, S. Zhang, C. Zhao, R. Luo, J. Li, X. Zhang, S. Zhao. Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett., 4, 2491-2499(2019).

    [50] B. Li, Y. Zhang, L. Zhang, L. Yin. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. J. Power Sources, 360, 11-20(2017).

    [51] L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H. L. Yip. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv. Mater., 30, 1802509(2018).

    [52] D. Ghosh, M. Y. Ali, D. K. Chaudhary, S. Bhattacharyya. Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells. Sol. Energy Mater. Sol. Cells, 185, 28-35(2018).

    [53] Y. Ren, Y. Hao, N. Zhang, Z. Arain, M. Mateen, Y. Sun, P. Shi, M. Cai, S. Dai. Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all-inorganic solar cell. Chem. Eng. J., 392, 123805(2020).

    [54] M. Wu, K. Yan, Y. Wang, X. Kang. High crystallinity and photovoltaic performance of CsPbI3 film enabled by secondary dimension. J. Energy Chem., 48, 181-186(2020).

    [55] W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 3, 191-204(2019).

    [56] D. H. Kim, J. H. Heo, S. H. Im. Hysteresis-less CsPbI2Br mesoscopic perovskite solar cells with a high open-circuit voltage exceeding 1.3  V and 14.86% of power conversion efficiency. ACS Appl. Mater. Interfaces, 11, 19123-19131(2019).

    [57] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett., 17, 2028-2033(2017).

    [58] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett., 2, 2319-2325(2017).

    [59] C. F. J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, S. Huang, A. Ho-Baillie. Enhanced performance via partial lead replacement with calcium for a CsPbl3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A, 6, 5580-5586(2018).

    [60] Z. Guo, S. Zhao, A. Liu, Y. Kamata, S. Teo, S. Yang, Z. Xu, S. Hayase, T. Ma. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces, 11, 19994-20003(2019).

    [61] S. S. Mali, J. V. Patil, C. K. Hong. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells. Nano Lett., 19, 6213-6220(2019).

    [62] S. Chen, T. Zhang, X. Liu, J. Qiao, L. Peng, J. Wang, Y. Liu, T. Yang, J. Lin. Lattice reconstruction of La-incorporated CsPbI2Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells. J. Mater. Chem. C, 8, 3351-3358(2020).

    [63] X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano Energy, 56, 184-195(2019).

    [64] A. Surendran, X. Yu, R. Begum, Y. Tao, Q. J. Wang, W. L. Leong. All inorganic mixed halide perovskite nanocrystal-graphene hybrid photodetector: from ultrahigh gain to photostability. ACS Appl. Mater. Interfaces, 11, 27064-27072(2019).

    [65] X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y.-B. Cheng, A. Hagfeldt, L. Sun. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. J. Energy Chem., 46, 8-15(2020).

    [66] Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen, X. Yong, S. A. Redfern, H. Wei, H. Wang, H. Shen. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3  V. Adv. Mater., 30, 1705393(2018).

    [67] H. Chen, A. Guo, X. Gu, M. Feng. Highly luminescent CsPbX3 (X= Cl, Br, I) perovskite nanocrystals with tunable photoluminescence properties. J. Alloys Compd., 789, 392-399(2019).

    [68] Y.-K. Ren, X.-Q. Shi, X.-H. Ding, J. Zhu, T. Hayat, A. Alsaedi, Z.-Q. Li, X.-X. Xu, S.-F. Yang, S.-Y. Dai. Facile fabrication of perovskite layers with large grains through a solvent exchange approach. Inorg. Chem. Front., 5, 348-353(2018).

    [69] Y.-K. Ren, X.-H. Ding, Y.-H. Wu, J. Zhu, T. Hayat, A. Alsaedi, Y.-F. Xu, Z.-Q. Li, S.-F. Yang, S.-Y. Dai. Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells. J. Mater. Chem. A, 5, 20327-20333(2017).

    [70] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. M. Yang, M. Wei, B. R. Sutherland. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun., 8, 15640(2017).

    [71] W. Ning, F. Wang, B. Wu, J. Lu, Z. Yan, X. Liu, Y. Tao, J. M. Liu, W. Huang, M. Fahlman. Long electron–hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater., 30, 1706246(2018).

    [72] Z. Yang, X. Zhang, W. Yang, G. E. Eperon, D. S. Ginger. Tin–lead alloying for efficient and stable all-inorganic perovskite solar cells. Chem. Mater., 32, 2782-2794(2020).

    [73] C. Wang, J. Zhang, J. Duan, L. Gong, J. Wu, L. Jiang, C. Zhou, H. Xie, Y. Gao, H. He. All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar perovskite solar cells by a two-step temperature-control annealing process. Mater. Sci. Semicond. Process., 108, 104870(2020).

    [74] Y. Yuan, M. Chen, S. Yang, X. Shen, Y. Liu, D. Cao. Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite. J. Lumin., 226, 117471(2020).

    [75] J. Deng, J. Xun, R. He. Facile and rapid synthesis of high performance perovskite nanocrystals CsPb (X/Br)3 (X= Cl, I) at room temperature. Opt. Mater., 99, 109528(2020).

    [76] D. Lu, Y. Zhang, M. Lai, A. Lee, C. Xie, J. Lin, T. Lei, Z. Lin, C. S. Kley, J. Huang, E. Rabani, P. Yang. Giant light-emission enhancement in lead halide perovskites by surface oxygen passivation. Nano Lett., 18, 6967-6973(2018).

    [77] J. Lin, H. Chen, J. Kang, L. N. Quan, Z. Lin, Q. Kong, M. Lai, S. Yu, L. Wang, L.-W. Wang. Copper (I)-based highly emissive all-inorganic rare-earth halide clusters. Matter, 1, 180-191(2019).

    [78] W. Zhao, Z. Yao, F. Yu, D. Yang, S. Liu. Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Adv. Sci., 5, 1700131(2018).

    [79] W. Zhao, D. Yang, Z. Yang, S. F. Liu. Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Mater. Today Energy, 5, 205-213(2017).

    [80] S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, H. Chen. The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI3 for efficient carbon-based perovskite solar cells. Nanoscale, 10, 9996-10004(2018).

    [81] Q. Dong, Z. Wang, K. Zhang, H. Yu, P. Huang, X. Liu, Y. Zhou, N. Chen, B. Song. Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells. Nanoscale, 8, 5552-5558(2016).

    [82] M. Hadadian, J. P. Correa-Baena, E. K. Goharshadi, A. Ummadisingu, J. Y. Seo, J. Luo, S. Gholipour, S. M. Zakeeruddin, M. Saliba, A. Abate. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater., 28, 8681-8686(2016).

    [83] K. Thesika, A. V. Murugan. Microwave-enhanced chemistry at solid-liquid interfaces: synthesis of all-inorganic CsPbX3 nanocrystals and unveiling the anion-induced evolution of structural and optical properties. Inorg. Chem., 59, 6161-6175(2020).

    [84] X. Chen, H. Lu, Y. Yang, M. C. Beard. Excitonic effects in methylammonium lead halide perovskites. J. Phys. Chem. Lett., 9, 2595-2603(2018).

    [85] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, Z. Ye. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun., 7, 10896(2016).

    [86] Q. Shang, S. Zhang, Z. Liu, J. Chen, P. Yang, C. Li, W. Li, Y. Zhang, Q. Xiong, X. Liu, Q. Zhang. Surface plasmon enhanced strong exciton-photon coupling in hybrid inorganic-organic perovskite nanowires. Nano Lett., 18, 3335-3343(2018).

    [87] Y. Fu, M. T. Rea, J. Chen, D. J. Morrow, M. P. Hautzinger, Y. Zhao, D. Pan, L. H. Manger, J. C. Wright, R. H. Goldsmith. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem. Mater., 29, 8385-8394(2017).

    [88] Y. Zhu, G. Pan, L. Shao, G. Yang, X. Xu, J. Zhao, Y. Mao. Effective infrared emission of erbium ions doped inorganic lead halide perovskite quantum dots by sensitization of ytterbium ions. J. Alloys Compd., 835, 155390(2020).

    [89] X. Zhang, Y. Zhang, X. Zhang, W. Yin, Y. Wang, H. Wang, M. Lu, Z. Li, Z. Gu, W. Y. William. Yb3+ and Yb3+/Er3+ doping for near-infrared emission and improved stability of CsPbCl3 nanocrystals. J. Mater. Chem. C, 6, 10101-10105(2018).

    [90] G. Pan, X. Bai, W. Xu, X. Chen, D. Zhou, J. Zhu, H. Shao, Y. Zhai, B. Dong, L. Xu. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet–white light-emitting diode. ACS Appl. Mater. Interfaces, 10, 39040-39048(2018).

    [91] A. Dey, P. Rathod, D. Kabra. Role of localized states in photoluminescence dynamics of high optical gain CsPbBr3 nanocrystals. Adv. Opt. Mater., 6, 1800109(2018).

    [92] T. Schmidt, G. Daniel, K. Lischka. The excitation power dependence of the near band edge photoluminescence of II-VI semiconductors. J. Cryst. Growth, 117, 748-752(1992).

    [93] B. Wu, Y. Zhou, G. Xing, Q. Xu, H. F. Garces, A. Solanki, T. W. Goh, N. P. Padture, T. C. Sum. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv. Funct. Mater., 27, 1604818(2017).

    [94] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc., 136, 11610-11613(2014).

    [95] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013).

    [96] C. Li, L. Zhao, H. Fan, Q. Shang, W. Du, J. Shi, Y. Zhao, X. Liu, Q. Zhang. Graphoepitaxy of large scale, highly ordered CsPbBr3 nanowire array on muscovite mica (001) driven by surface reconstructed grooves. Adv. Opt. Mater., 8, 2000743(2020).

    [97] Z. Wu, J. Chen, Y. Mi, X. Sui, S. Zhang, W. Du, R. Wang, J. Shi, X. Wu, X. Qiu, Z. Qin, Q. Zhang, X. Liu. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv. Opt. Mater., 6, 1800674(2018).

    [98] Y. Mi, Z. Liu, Q. Shang, X. Niu, J. Shi, S. Zhang, J. Chen, W. Du, Z. Wu, R. Wang, X. Qiu, X. Hu, Q. Zhang, T. Wu, X. Liu. Fabry–Perot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities. Small, 14, 1703136(2018).

    [99] P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zhao, Y. Masumoto. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. J. Phys. Chem. C, 113, 13545-13550(2009).

    [100] W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, X. Liu. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 11, 3145-3153(2019).

    [101] K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang, L. Li, T. Wu. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys., 16, 22476-22481(2014).

    [102] J. Dai, H. Zheng, C. Zhu, J. Lu, C. Xu. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. J. Mater. Chem. C, 4, 4408-4413(2016).

    [103] S. M. Lee, C. J. Moon, H. Lim, Y. Lee, M. Y. Choi, J. Bang. Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature. J. Phys. Chem. C, 121, 26054-26062(2017).

    [104] J. Li, X. Yuan, P. Jing, J. Li, M. Wei, J. Hua, J. Zhao, L. Tian. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv., 6, 78311-78316(2016).

    [105] B. T. Diroll, H. Zhou, R. D. Schaller. Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater., 28, 1800945(2018).

    [106] A. Shinde, R. Gahlaut, S. Mahamuni. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C, 121, 14872-14878(2017).

    [107] K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, T. Jiang. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett., 41, 3821-3824(2016).

    [108] Q. Han, W. Wu, W. Liu, Q. Yang, Y. Yang. Temperature-dependent photoluminescence of CsPbX3 nanocrystal films. J. Lumin., 198, 350-356(2018).

    [109] X. Yuan, X. Hou, J. Li, C. Qu, W. Zhang, J. Zhao, H. Li. Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys. Chem. Chem. Phys., 19, 8934-8940(2017).

    [110] Y. Gao, L. Zhao, Q. Y. Shang, C. Li, Z. Liu, Q. Li, X. N. Wang, Q. Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J. Semicond., 40, 052201(2019).

    [111] Y. Gao, L. Zhao, Q. Shang, Y. Zhong, Z. Liu, J. Chen, Z. Zhang, J. Shi, W. Du, Y. Zhang, S. Chen, P. Gao, X. Liu, X. Wang, Q. Zhang. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv. Mater., 30, 1801805(2018).

    [112] T. T. K. Tanaka, T. Ban, T. Kondo, K. Uchida, N. Miura. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun., 127, 619-623(2003).

    [113] M. Baranowski, P. Plochocka, R. Su, L. Legrand, T. Barisien, F. Bernardot, Q. Xiong, C. Testelin, M. Chamarro. Exciton binding energy and effective mass of CsPbCl3: a magneto-optical study. Photon. Res., 8, A50-A55(2020).

    [114] Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. D. M. Donega, A. Meijerink. High-temperature luminescence quenching of colloidal quantum dots. ACS Nano, 6, 9058-9067(2012).

    [115] C.-X. Qian, Z.-Y. Deng, K. Yang, J. Feng, M.-Z. Wang, Z. Yang, S. Liu, H.-J. Feng. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells. Appl. Phys. Lett., 112, 093901(2018).

    [116] C. Chen, C. Wu, X. Ding, Y. Tian, M. Zheng, M. Cheng, H. Xu, Z. Jin, L. Ding. Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells. Nano Energy, 71, 104604(2020).

    [117] S. Yang, H. Zhao, M. Wu, S. Yuan, Y. Han, Z. Liu, K. Guo, S. F. Liu, S. Yang, H. Zhao. Highly efficient and stable planar CsPbI2Br perovskite solar cell with a new sensitive-dopant-free hole transport layer obtained via an effective surface passivation. Sol. Energy Mater. Sol. Cells, 201, 110052(2019).

    [118] S. Yang, L. Wang, L. Gao, J. Cao, Q. Han, F. Yu, Y. Kamata, C. Zhang, M. Fan, G. Wei. Excellent moisture stability and efficiency of inverted all-inorganic CsPbIBr2 perovskite solar cells through molecule interface engineering. ACS Appl. Mater. Interfaces, 12, 13931-13940(2020).

    [119] Y. Liu, X. Zhao, Z. Yang, Q. Li, W. Wei, B. Hu, W. Chen. Cu12Sb4S13 quantum dots with ligand exchange as hole transport materials in all-inorganic perovskite CsPbI3 quantum dot solar cells. ACS Appl. Energy Mater., 3, 3521-3529(2020).

    [120] Z. Zong, B. He, J. Zhu, Y. Ding, W. Zhang, J. Duan, Y. Zhao, H. Chen, Q. Tang. Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite. Sol. Energy Mater. Sol. Cells, 209, 110460(2020).

    [121] X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu, J. Yang. All-inorganic CsPbBr3 perovskite solar cells with 10.45% efficiency by evaporation-assisted deposition and setting intermediate energy levels. ACS Appl. Mater. Interfaces, 11, 29746-29752(2019).

    [122] G. Su, B. He, Z. Gong, Y. Ding, J. Duan, Y. Zhao, H. Chen, Q. Tang. Enhanced charge extraction in carbon-based all-inorganic CsPbBr3 perovskite solar cells by dual-function interface engineering. Electrochim. Acta, 328, 135102(2019).

    [123] C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc., 140, 3825-3828(2018).

    [124] L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su, Z. Hu, C. Zhang, S. F. Liu, J. Chang, Y. Hao. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy, 60, 583-590(2019).

    [125] L. Fu, Y. Nie, B. Li, N. Li, B. Cao, L. Yin. Bismuth telluride interlayer for all-inorganic perovskite solar cells with enhanced efficiency and stability. Sol. RRL, 3, 1900233(2019).

    [126] X. Li, J. Yang, Q. Jiang, H. Lai, S. Li, J. Xin, W. Chu, J. Hou. Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability. ACS Nano, 12, 5605-5614(2018).

    [127] J. Duan, Y. Zhao, B. He, Q. Tang. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angew. Chem. (Int. Ed.), 130, 3849-3853(2018).

    [128] Y. Yang, T. Wang, Y. Zhang, X. Zhang, N. Li, P. Wang, Y. Qian, Q. Rong, L. Shui, G. Zhou. High performance all-inorganic CsPbI2Br perovskite solar cells with low energy losses. Sol. Energy, 196, 22-26(2020).

    [129] L. Niu, X. Liu, C. Cong, C. Wu, D. Wu, T. R. Chang, H. Wang, Q. Zeng, J. Zhou, X. Wang, W. Fu, P. Yu, Q. Fu, S. Najmaei, Z. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. He, T. Yu, Z. Liu. Controlled synthesis of organic/inorganic van der Waals solid for tunable light–matter interactions. Adv. Mater., 27, 7800-7808(2015).

    [130] A. Yang, J.-C. Blacton, W. Jiang, H. Zhang, J. Wong, E. Yan, Y.-R. Lin, J. Crochet, M. G. Kanatzidis, D. Jariwala, T. Low, A. D. Mohite, H. A. Atwater. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett., 19, 4852-4860(2019).

    [131] L. Zhao, Y. Gao, M. Su, Q. Shang, Z. Liu, Q. Li, Q. Wei, M. Li, L. Fu, Y. Zhong, J. Shi, J. Chen, Y. Zhao, X. Qiu, X. Liu, N. Tang, G. Xing, X. Wang, B. Shen, Q. Zhang. Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: toward integrated optoelectronic applications. ACS Nano, 13, 10085-10094(2019).

    [132] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).

    [133] Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, Q. Gong. Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci. Rep., 5, 14485(2015).

    [134] J. Hu, C. Zhao, S. He, W. Tian, C. Hao, S. Jin. Carrier dynamics in CsPbI3 perovskite microcrystals synthesized in solution phase. Chin. Chem. Lett., 29, 699-702(2018).

    [135] M. Chen, M.-G. Ju, A. D. Carl, Y. Zong, R. L. Grimm, J. Gu, X. C. Zeng, Y. Zhou, N. P. Padture. Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule, 2, 558-570(2018).

    [136] B. Li, H. Huang, G. Zhang, C. Yang, W. Guo, R. Chen, C. Qin, Y. Gao, V. P. Biju, A. L. Rogach, L. Xiao, S. Jia. Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett., 9, 6934-6940(2018).

    [137] R. L. Z. Hoye, L. Eyre, F. Wei, F. Brivio, A. Sadhanala, S. Sun, W. Li, K. H. L. Zhang, J. L. MacManus-Driscoll, P. D. Bristowe, R. H. Friend, A. K. Cheetham, F. Deschler. Fundamental carrier lifetime exceeding 1  μs in Cs2AgBiBr6 double perovskite. Adv. Mater. Interfaces, 5, 1800464(2018).

    [138] F. Zhang, J. Chen, Y. Zhou, R. He, K. Zheng. Effect of synthesis methods on photoluminescent properties for CsPbBr3 nanocrystals: hot injection method and conversion method. J. Lumin., 220, 117023(2020).

    [139] B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng, K. Han. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem. (Int. Ed.), 129, 12645-12649(2017).

    [140] K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong, T. Lian. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc., 137, 12792-12795(2015).

    [141] Q. Li, T. Lian. Ultrafast charge separation in two-dimensional CsPbBr3 perovskite nanoplatelets. J. Phys. Chem. Lett., 10, 566-573(2019).

    [142] E. M. Hutter, R. J. Sutton, S. Chandrashekar, M. Abdi-Jalebi, S. D. Stranks, H. J. Snaith, T. J. Savenije. Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett., 2, 1901-1908(2017).

    [143] O. J. Sandberg, K. Tvingstedt, P. Meredith, A. Armin. Theoretical perspective on transient photovoltage and charge extraction techniques. J. Phys. Chem. C, 123, 14261-14271(2019).

    [144] S. Dhariwal, L. Kothari, S. Jain. Theory of transient photovoltaic effects used for measurement of lifetime of carriers in solar cells. Solid-State Electron., 20, 297-304(1977).

    [145] W. M. Lin, D. Bozyigit, O. Yarema, V. Wood. Transient photovoltage measurements in nanocrystal-based solar cells. J. Phys. Chem. C, 120, 12900-12908(2016).

    [146] S. Zhang, S. Wu, W. Chen, H. Zhu, Z. Xiong, Z. Yang, C. Chen, R. Chen, L. Han, W. Chen. Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Mater. Today Energy, 8, 125-133(2018).

    [147] D. Bai, H. Bian, Z. Jin, H. Wang, L. Meng, Q. Wang, S. F. Liu. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy, 52, 408-415(2018).

    [148] H. Guo, Y. Pei, J. Zhang, C. Cai, K. Zhou, Y. Zhu. Doping with SnBr2 in CsPbBr3 to enhance the efficiency of all-inorganic perovskite solar cells. J. Mater. Chem. C, 7, 11234-11243(2019).

    [149] Y. Wang, T. Zhang, M. Kan, Y. Zhao. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc., 140, 12345-12348(2018).

    [150] C. L. Kennedy, A. H. Hill, E. S. Massaro, E. M. Grumstrup. Ultrafast excited-state transport and decay dynamics in cesium lead mixed halide perovskites. ACS Energy Lett., 2, 1501-1506(2017).

    [151] J. Song, Q. Cui, J. Li, J. Xu, Y. Wang, L. Xu, J. Xue, Y. Dong, T. Tian, H. Sun. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible–infrared dual-modal photodetectors. Adv. Opt. Mater., 5, 1700157(2017).

    CLP Journals

    [1] Tianju Zhang, Chaocheng Zhou, Jia Lin, Jun Wang. Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites[J]. Chinese Optics Letters, 2022, 20(2): 021602

    Jing Chen, Chao Zhang, Xiaolin Liu, Lin Peng, Jia Lin, Xianfeng Chen. Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra[J]. Photonics Research, 2021, 9(2): 151
    Download Citation