• Photonics Research
  • Vol. 9, Issue 5, 829 (2021)
Ping Gu1, Jing Chen1、*, Siyu Chen1, Chun Yang1, Zuxing Zhang1, Wei Du2、3, Zhengdong Yan4, Chaojun Tang5、6, and Zhuo Chen2、7
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Microelectronics, Institute of Advanced Photonics Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2College of Physics, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 3College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
  • 4College of Science, Nanjing Forestry University, Nanjing 210037, China
  • 5College of Science, Zhejiang University of Technology, Hangzhou 310023, China
  • 6e-mail: chaojuntang@126.com
  • 7e-mail: zchen@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.417648 Cite this Article Set citation alerts
    Ping Gu, Jing Chen, Siyu Chen, Chun Yang, Zuxing Zhang, Wei Du, Zhengdong Yan, Chaojun Tang, Zhuo Chen. Ultralarge Rabi splitting and broadband strong coupling in a spherical hyperbolic metamaterial cavity[J]. Photonics Research, 2021, 9(5): 829 Copy Citation Text show less
    References

    [1] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2009).

    [2] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [3] P. Song, J. H. Wang, M. Zhang, F. Yang, H. J. Lu, B. Kang, J. J. Xu, H. Y. Chen. Three-level spaser for next-generation luminescent nanoprobe. Sci. Adv., 4, eaat0292(2018).

    [4] S. Lal, S. Link, N. J. Halas. Nano-optics from sensing to waveguiding. Nat. Photonics, 1, 641-648(2007).

    [5] T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, Q. Bao. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance. Nat. Commun., 10, 28(2019).

    [6] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [7] G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, M. H. Mikkelsen. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics, 8, 835-840(2014).

    [8] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [9] L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, P. Trömä. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett., 112, 153002(2014).

    [10] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).

    [11] E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, M. Pilo-Pais. Plasmon-exciton coupling using DNA templates. Nano Lett., 16, 5962-5966(2016).

    [12] F. Kato, H. Minamimoto, F. Nagasawa, Y. S. Yamamoto, T. Itoh, K. Murakoshi. Active tuning of strong coupling states between dye excitons and localized surface plasmons via electrochemical potential control. ACS Photon., 5, 788-796(2018).

    [13] O. S. Ojambati, R. Chikkaraddy, W. D. Deacon, M. Horton, D. Kos, V. A. Turek, U. F. Keyser, J. J. Baumberg. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat. Commun., 10, 1049(2019).

    [14] K. S. Menghrajani, H. A. Fernandez, G. R. Nash, W. L. Barnes. Hybridization of multiple vibrational modes via strong coupling using confined light fields. Adv. Opt. Mater., 7, 1900403(2019).

    [15] P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, C. Lienau. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics, 7, 128-132(2013).

    [16] D. Melnikau, R. Esteban, D. Savateeva, A. Sánchez-Iglesias, M. Grzelczak, M. K. Schmidt, L. M. Liz-Marzán, J. Aizpurua, Y. P. Rakovich. Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and J-aggregates. J. Phys. Chem. Lett., 7, 354-362(2016).

    [17] A. J. Moilanen, T. K. Hakala, P. Törmä. Active control of surface plasmon−emitter strong coupling. ACS Photon., 5, 54-64(2018).

    [18] M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. Pury, C. Große, B. Nijs, J. Mertens, A. I. Tartakovskii, J. J. Baumberg. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 8, 1296(2017).

    [19] D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, H. Xu. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett., 17, 3809-3814(2017).

    [20] L. Liu, L. Y. M. Tobing, X. Yu, J. Tong, B. Qiang. Strong plasmon–exciton interactions on nanoantenna array–monolayer WS2 hybrid system. Adv. Opt. Mater., 8, 1901002(2019).

    [21] X. Yan, H. Wei. Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe2. Nanoscale, 12, 9708-9716(2020).

    [22] M. Geisler, X. Cui, J. Wang, T. Rindzevicius, L. Gammelgaard, B. S. Jessen, P. A. D. Goncalves, F. Todisco, P. Bøggild, A. Boisen, M. Wubs, N. A. Mortensen, S. Xiao. Single-crystalline gold nanodisks on WS2 mono- and multilayers for strong coupling at room temperature. ACS Photon., 6, 994-1001(2019).

    [23] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [24] Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. K. Yang, Z. C. Dong, J. G. Hou. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun., 8, 15225(2017).

    [25] H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, B. Hecht. Near-field strong coupling of single quantum dots. Sci. Adv., 4, eaar4906(2018).

    [26] H. Leng, B. Szychowski, M. C. Daniel, M. Pelton. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun., 9, 4012(2018).

    [27] P. Zeng, J. Cadusch, D. Chakraborty, T. A. Smith, A. Roberts, J. E. Sader, T. J. Davis. Photoinduced electron transfer in strong coupling regime: waveguide–plasmon polaritons. Nano Lett., 16, 2651-2656(2016).

    [28] Z. Xi, Y. Lu, W. Yu, P. Yao, P. Wang, H. Ming. Strong coupling between plasmonic Fabry-Pérot cavity mode and magnetic plasmon. Opt. Lett., 38, 1591-1593(2013).

    [29] C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. Roelofs, S. F. Bent. Strong coupling of plasmon and nanocavity modes for dual band, near-perfect absorbers and ultrathin photovoltaics. ACS Photon., 3, 456-463(2016).

    [30] X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa. Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol., 13, 953-958(2018).

    [31] Y. Chu, K. B. Crozier. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett., 34, 244-246(2009).

    [32] C. Zhang, J. Fang, W. Yang, Q. Song, S. Xiao. Enhancing the magnetic resonance via strong coupling in optical metamaterials. Adv. Opt. Mater., 5, 1700469(2017).

    [33] H. Shan, Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B. K. Tay, Z. Liu, X. Zhu, Z. Fang. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl., 8, 9(2019).

    [34] J. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, Q. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun., 9, 4858(2018).

    [35] W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, X. Wang. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Opt. Express, 21, 10251-10258(2013).

    [36] Y. Ji, C. Tang, N. Xie, J. Chen, P. Gu, C. Peng, B. Liu. High-performance metamaterial sensors based on strong coupling between surface plasmon polaritons and magnetic plasmon resonances. Results Phys., 14, 102397(2019).

    [37] T. Klar, M. Perner, S. Grosse, G. Plessen, W. Spirkl, J. Feldmann. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 80, 4249-4252(1998).

    [38] C. Sönnichsen, T. Wilk, G. Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 88, 077402(2002).

    [39] Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, H. Misawa. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano, 10, 3835-3842(2016).

    [40] T. Schwartz, J. A. Hutchison, C. Genet, T. W. Ebbesen. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett., 106, 196405(2011).

    [41] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(1983).

    [42] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [43] C. Wu, A. Salandrino, X. Ni, X. Zhang. Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities. Phys. Rev. X, 4, 021015(2014).

    [44] M. Wan, P. Gu, W. Liu, Z. Chen, Z. Wang. Low threhold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Appl. Phys. Lett., 110, 031103(2017).

    [45] J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, A. Polman. Optical cavity modes in gold shell colloids. J. Appl. Phys., 103, 123105(2008).

    [46] D. E. Aspnes, A. A. Studna. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV. Phys. Rev. B, 27, 985-1009(1983).

    [47] D. E. Aspnes, S. M. Kelso, R. A. Logan, R. Bhat. Optical properties of AlxGa1-xAs. J. Appl. Phys., 60, 754-767(1986).

    [48] B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J. P. Hugonin, F. Marquier, J. J. Greffet, B. Dubertret. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol., 10, 170-175(2015).

    [49] P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026-1039(2017).

    Ping Gu, Jing Chen, Siyu Chen, Chun Yang, Zuxing Zhang, Wei Du, Zhengdong Yan, Chaojun Tang, Zhuo Chen. Ultralarge Rabi splitting and broadband strong coupling in a spherical hyperbolic metamaterial cavity[J]. Photonics Research, 2021, 9(5): 829
    Download Citation