
- Photonics Research
- Vol. 9, Issue 5, 829 (2021)
Abstract
1. INTRODUCTION
Localized surface plasmon resonances (LSPRs) arising from the collective electron oscillation at the surfaces of metallic nanoparticles have the ability to concentrate light into the nanometric scale, produce highly localized fields, and promote light–matter interactions [1], which enables their use in a wide range of nanophotonic devices, such as nanolasers [2,3] and nanosensors [4,5], as well as in Purcell enhancement [6,7]. In recent years, LSPR-based strong coupling (SC) characterized by the realization of Rabi oscillation and the formation of anti-crossing behavior (new hybrid states) has become the focus of research, divided into three main categories. In the first category, the realization of SC between gap plasmons supported by metal nanoparticle-on-mirror structures (LSPR–mirror coupled modes) and different kinds of quantum emitters, including semiconductor quantum dots (QDs) [8], molecules [9–14], J-aggregates [15–17], and two-dimensional materials [18–22], has been intensively explored. In particular, more recently it has been observed experimentally that the SC between gap plasmons and a single molecule [23,24] or single QD [25,26] successfully forms part-light/part-matter states (mixed states) at the quantum limit, which paves the road toward quantum entangled single-photon sources. In the second category, the SC between LSPR or magnetic plasmons and optical modes (waveguide modes or Fabry–Perot nanocavity modes) enables high electric and magnetic intensity enhancement [27,28] and assisted hot-electron transfer [28], which has important applications in photovoltaic devices [29,30]. In addition, the SC between LSPR or magnetic plasmons and propagating surface plasmon polaritons (SPPs) (the third category) can also achieve high electric and magnetic intensity enhancement [31,32], assisted hot-electron transfer [33], enhanced dephasing time [34], and improved sensor performance [35,36].
The common shortcoming of LSPR is the low quality factor (
In this paper, we aim to explore the SC effect between two high-
2. RESULTS AND DISCUSSION
A. Mode Analysis of a Spherical HMM Cavity
Figure 1.(a) Schematic of a spherical HMM cavity composed of a dielectric nanosphere core (radius
In order to further understand these sharp resonant modes supported by the spherical HMM cavity, we perform the near-field profiles at the selected energies using an analytical Mie solution. Figures 1(c)–1(h) show the electric field intensity (
B. Ultralarge Rabi Splitting via Strong Coupling between
Figure 2.(a) Absorption efficiency spectra (
To further reveal the physical origins of the observed anti-crossing effect between
After we perform the CTM model, the resonant energies of the two hybrid modes are predicted and displayed with the red lines with circles in Fig. 2(a). Comparing the CTM model (red/circle lines) with the theoretical results (Mie theory) shows good agreement [Fig. 2(a)], which successfully reproduces the anti-crossing behavior of
Figure 3.(a), (c) Electric field intensity distributions of
Figure 4.(a), (c)
In the following, we further demonstrate that the normal Rabi splitting energy (
C. Broadband Strong Coupling Produced by Varying the Dielectric Core Size
Figure 5.(a) Absorption efficiency spectra (
The absorption efficiency spectra of the spherical HMM cavity at
Figure 5(c) displays the Rabi splitting energy in the HMM cavity as a function of
3. CONCLUSION
In summary, we have theoretically demonstrated a record Rabi splitting energy of up to 805 meV, arising from the SC between two high-
Acknowledgment
Acknowledgment. G. P. thanks the NUPTSF and the Double Innovation Project of Jiangsu Province.
APPENDIX A: DETAILED NUMERICAL CALCULATION METHOD
To calculate the lifetime (
Figure 6.Fano fitting (olive lines) for the multiple absorption peaks (hollow red circles) of a spherical HMM cavity (
Figure 7.(a)–(d) Resonant energies of
Figure 8.Radial (vertical direction) electric field intensity distributions of (a)
Figure 9.Calculated absorption efficiency spectra (
However, for
Figure?
Figure?
References
[1] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2009).
[2] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).
[3] P. Song, J. H. Wang, M. Zhang, F. Yang, H. J. Lu, B. Kang, J. J. Xu, H. Y. Chen. Three-level spaser for next-generation luminescent nanoprobe. Sci. Adv., 4, eaat0292(2018).
[4] S. Lal, S. Link, N. J. Halas. Nano-optics from sensing to waveguiding. Nat. Photonics, 1, 641-648(2007).
[5] T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, Q. Bao. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance. Nat. Commun., 10, 28(2019).
[6] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).
[7] G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, M. H. Mikkelsen. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics, 8, 835-840(2014).
[8] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).
[9] L. Shi, T. K. Hakala, H. T. Rekola, J. P. Martikainen, R. J. Moerland, P. Trömä. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett., 112, 153002(2014).
[10] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).
[11] E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, M. Pilo-Pais. Plasmon-exciton coupling using DNA templates. Nano Lett., 16, 5962-5966(2016).
[12] F. Kato, H. Minamimoto, F. Nagasawa, Y. S. Yamamoto, T. Itoh, K. Murakoshi. Active tuning of strong coupling states between dye excitons and localized surface plasmons via electrochemical potential control. ACS Photon., 5, 788-796(2018).
[13] O. S. Ojambati, R. Chikkaraddy, W. D. Deacon, M. Horton, D. Kos, V. A. Turek, U. F. Keyser, J. J. Baumberg. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat. Commun., 10, 1049(2019).
[14] K. S. Menghrajani, H. A. Fernandez, G. R. Nash, W. L. Barnes. Hybridization of multiple vibrational modes via strong coupling using confined light fields. Adv. Opt. Mater., 7, 1900403(2019).
[15] P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, C. Lienau. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics, 7, 128-132(2013).
[16] D. Melnikau, R. Esteban, D. Savateeva, A. Sánchez-Iglesias, M. Grzelczak, M. K. Schmidt, L. M. Liz-Marzán, J. Aizpurua, Y. P. Rakovich. Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and J-aggregates. J. Phys. Chem. Lett., 7, 354-362(2016).
[17] A. J. Moilanen, T. K. Hakala, P. Törmä. Active control of surface plasmon−emitter strong coupling. ACS Photon., 5, 54-64(2018).
[18] M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. Pury, C. Große, B. Nijs, J. Mertens, A. I. Tartakovskii, J. J. Baumberg. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 8, 1296(2017).
[19] D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, H. Xu. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett., 17, 3809-3814(2017).
[20] L. Liu, L. Y. M. Tobing, X. Yu, J. Tong, B. Qiang. Strong plasmon–exciton interactions on nanoantenna array–monolayer WS2 hybrid system. Adv. Opt. Mater., 8, 1901002(2019).
[21] X. Yan, H. Wei. Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe2. Nanoscale, 12, 9708-9716(2020).
[22] M. Geisler, X. Cui, J. Wang, T. Rindzevicius, L. Gammelgaard, B. S. Jessen, P. A. D. Goncalves, F. Todisco, P. Bøggild, A. Boisen, M. Wubs, N. A. Mortensen, S. Xiao. Single-crystalline gold nanodisks on WS2 mono- and multilayers for strong coupling at room temperature. ACS Photon., 6, 994-1001(2019).
[23] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).
[24] Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. K. Yang, Z. C. Dong, J. G. Hou. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun., 8, 15225(2017).
[25] H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, B. Hecht. Near-field strong coupling of single quantum dots. Sci. Adv., 4, eaar4906(2018).
[26] H. Leng, B. Szychowski, M. C. Daniel, M. Pelton. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun., 9, 4012(2018).
[27] P. Zeng, J. Cadusch, D. Chakraborty, T. A. Smith, A. Roberts, J. E. Sader, T. J. Davis. Photoinduced electron transfer in strong coupling regime: waveguide–plasmon polaritons. Nano Lett., 16, 2651-2656(2016).
[28] Z. Xi, Y. Lu, W. Yu, P. Yao, P. Wang, H. Ming. Strong coupling between plasmonic Fabry-Pérot cavity mode and magnetic plasmon. Opt. Lett., 38, 1591-1593(2013).
[29] C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. Roelofs, S. F. Bent. Strong coupling of plasmon and nanocavity modes for dual band, near-perfect absorbers and ultrathin photovoltaics. ACS Photon., 3, 456-463(2016).
[30] X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa. Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol., 13, 953-958(2018).
[31] Y. Chu, K. B. Crozier. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett., 34, 244-246(2009).
[32] C. Zhang, J. Fang, W. Yang, Q. Song, S. Xiao. Enhancing the magnetic resonance via strong coupling in optical metamaterials. Adv. Opt. Mater., 5, 1700469(2017).
[33] H. Shan, Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B. K. Tay, Z. Liu, X. Zhu, Z. Fang. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl., 8, 9(2019).
[34] J. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, Q. Gong. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat. Commun., 9, 4858(2018).
[35] W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, X. Wang. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Opt. Express, 21, 10251-10258(2013).
[36] Y. Ji, C. Tang, N. Xie, J. Chen, P. Gu, C. Peng, B. Liu. High-performance metamaterial sensors based on strong coupling between surface plasmon polaritons and magnetic plasmon resonances. Results Phys., 14, 102397(2019).
[37] T. Klar, M. Perner, S. Grosse, G. Plessen, W. Spirkl, J. Feldmann. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 80, 4249-4252(1998).
[38] C. Sönnichsen, T. Wilk, G. Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 88, 077402(2002).
[39] Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, H. Misawa. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano, 10, 3835-3842(2016).
[40] T. Schwartz, J. A. Hutchison, C. Genet, T. W. Ebbesen. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett., 106, 196405(2011).
[41] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(1983).
[42] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).
[43] C. Wu, A. Salandrino, X. Ni, X. Zhang. Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities. Phys. Rev. X, 4, 021015(2014).
[44] M. Wan, P. Gu, W. Liu, Z. Chen, Z. Wang. Low threhold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Appl. Phys. Lett., 110, 031103(2017).
[45] J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, A. Polman. Optical cavity modes in gold shell colloids. J. Appl. Phys., 103, 123105(2008).
[46] D. E. Aspnes, A. A. Studna. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B, 27, 985-1009(1983).
[47] D. E. Aspnes, S. M. Kelso, R. A. Logan, R. Bhat. Optical properties of Al
[48] B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J. P. Hugonin, F. Marquier, J. J. Greffet, B. Dubertret. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol., 10, 170-175(2015).
[49] P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026-1039(2017).

Set citation alerts for the article
Please enter your email address