• Journal of Semiconductors
  • Vol. 41, Issue 10, 102101 (2020)
Sh. G. Askerov, L. K. Abdullayeva, and M. G. Hasanov
Author Affiliations
  • Institute for Physical Problems, Baku State University, AZ1148, Baku, Azerbaijan
  • show less
    DOI: 10.1088/1674-4926/41/10/102101 Cite this Article
    Sh. G. Askerov, L. K. Abdullayeva, M. G. Hasanov. Study of electrophysical properties of metal–semiconductor contact by the theory of complex systems[J]. Journal of Semiconductors, 2020, 41(10): 102101 Copy Citation Text show less

    Abstract

    The purpose of this work is to analyze the electrical properties of the metal–semiconductor contact (MSC) in the framework of the theory of complex systems. The effect of inhomogeneity of the different microstructures: polycrystalline, monocrystalline, amorphous metal–semiconductor contact surface is investigated, considering a Schottky diode (SD) as a parallel connection of numerous subdiodes. It has been shown that the polycrystallinity of the metal translates a homogeneous contact into a complex system, which consists of parallel connected numerous elementary contacts having different properties and parameters.
    $\bar \Phi = \frac{{{\Phi _1}{S_1} + {\Phi _2}{S_2} + ... + {\Phi _n}{S_n}}}{{{S_1} + {S_2} + ... + {S_n}}} = \frac{{\sum\limits_{i = 1}^n {} {\Phi _i}{S_i}}}{{\sum\limits_{i = 1}^n {} {S_i}}} = \sum\limits_{i = 1}^n {{\Phi _i}{\omega _i}} ,$(1)

    View in Article

    ${\Phi _{\rm B}}\left( T \right) = {\Phi _{\rm B}}\left( 0 \right) + \alpha T,$ (2)

    View in Article

    $\alpha = - kT{\rm{ln}}\left[ {\omega + \left( {1 - \omega } \right){\rm{exp}}\left( { - \frac{{\Delta \Phi }}{{kT}}} \right)} \right],$ (3)

    View in Article

    ${I_{{\rm{S}}1}} = S{T^2}{A_1}{{\rm{e}}^{ - \frac{{\Phi _{{\rm{B}}1}^{\left( 0 \right)} + { \propto _1}T}}{{kT}}}} = S{T^2}B{{\rm{e}}^{ - \frac{{{ \propto _1}}}{k}}},$ (4)

    View in Article

    ${I_{{\rm{S}}2}} = S{T^2}{A_2}{{\rm{e}}^{ - \frac{{\Phi _{{\rm{B}}2}^{\left( 0 \right)} + { \propto _2}T}}{{kT}}}} = S{T^2}B{{\rm{e}}^{ - \frac{{{ \propto _2}}}{k}}}.$ (5)

    View in Article

    $B = {A_i} {{\rm{e}}^{ - \frac{{{\Phi _{\rm{B}i}}\left( 0 \right)}}{{kT}}}} = {\rm{const}}.$ (6)

    View in Article

    ${I_{\rm{S}}} = S{T^2}B.$ (7)

    View in Article

    $B = {I_{\rm{S}}}/S{T^2} = {\rm{const}}.$ (8)

    View in Article

    $\frac{{{I_{\rm S}}}}{{S{T^2}}} = {{B}}\exp\left( { - \frac{ \propto }{{{\kappa }}}} \right),$ (9)

    View in Article

    ${B_0} = {B_{\rm{T}}}{\rm{exp}} \left( { - \frac{\propto}{\kappa}} \right).$ (10)

    View in Article

    Sh. G. Askerov, L. K. Abdullayeva, M. G. Hasanov. Study of electrophysical properties of metal–semiconductor contact by the theory of complex systems[J]. Journal of Semiconductors, 2020, 41(10): 102101
    Download Citation