• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016006 (2023)
Zhiwei Guo1、*, Xian Wu1, Yong Sun1、*, Haitao Jiang1, Ya-Qiong Ding2, Yunhui Li1, Yewen Zhang1, and Hong Chen1、*
Author Affiliations
  • 1Tongji University, Key Laboratory of Advanced Microstructure Materials, School of Physics Science and Engineering, Shanghai, China
  • 2University of Shanghai for Science and Technology, Science College, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.2.1.016006 Cite this Article Set citation alerts
    Zhiwei Guo, Xian Wu, Yong Sun, Haitao Jiang, Ya-Qiong Ding, Yunhui Li, Yewen Zhang, Hong Chen. Anomalous broadband Floquet topological metasurface with pure site rings[J]. Advanced Photonics Nexus, 2023, 2(1): 016006 Copy Citation Text show less
    References

    [1] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [2] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).

    [3] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [4] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [5] Z. Wang et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [6] Z. Wang et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [7] Y. Poo et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett., 106, 093903(2011).

    [8] K. Fang, Z. Yu, S. Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics, 6, 782-787(2012).

    [9] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196(2013).

    [10] A. B. Khanikaev. Optical physics: on-chip synthetic magnetic field. Nat. Photonics, 7, 941-943(2013).

    [11] C. L. Kane, E. J. Mele. Topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802(2005).

    [12] C. L. Kane, E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801(2005).

    [13] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [14] T. Ma et al. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [15] X. J. Cheng et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542-548(2016).

    [16] C. He et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci., 113, 4924-4928(2016).

    [17] J. W. Dong et al. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [18] L. H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [19] Y. Yang et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 21740(2018).

    [20] X. Zhu et al. Topological transitions in continuously deformed photonic crystals. Phys. Rev. B, 97, 085148(2018).

    [21] Y. Li et al. Topological LC-circuits based on microstrips and observation of electromagnetic modes with orbital angular momentum. Nat. Commun., 9, 4598(2018).

    [22] S. Yves et al. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun., 8, 16023(2017).

    [23] S. Peng et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett., 122, 117401(2019).

    [24] M. Hafezi et al. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [25] M. Hafezi et al. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [26] G. Q. Liang, Y. D. Chong. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett., 110, 203904(2013).

    [27] M. Pasek, Y. D. Chong. Network models of photonic Floquet topological insulators. Phys. Rev. B, 89, 075113(2014).

    [28] X. Zhou et al. Optical isolation with nonlinear topological photonics. New J. Phys., 19, 095002(2017).

    [29] Y. G. Peng et al. Low-loss and broadband anomalous Floquet topological insulator for airborne sound. Appl. Phys. Lett., 110, 173505(2017).

    [30] F. Gao et al. Probing the limits of topological protection in a designer surface plasmon structure. Nat. Commun., 7, 11619(2016).

    [31] G. Harari et al. Topological insulator laser: theory. Science, 359, eaar4003(2018).

    [32] M. A. Bandres et al. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [33] X. Y. Zhu et al. Z2 topological edge state in honeycomb lattice of coupled resonant optical waveguides with a flat band. Opt. Express, 26, 24307(2018).

    [34] Y. T. Ao et al. Topological properties of coupled resonator array based on accurate band structure. Phys. Rev. Mater., 2, 105201(2018).

    [35] H. Zhao et al. Non-Hermitian topological light steering. Science, 365, 1163-1166(2019).

    [36] S. Mittal et al. Photonic quadrupole topological phases. Nat. Photonics, 13, 692-696(2019).

    [37] Q. S. Huang et al. Observation of the topological edge state in x-ray band. Laser Photonics Rev., 13, 1800339(2019).

    [38] Z. K. Shao et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol., 15, 67-72(2019).

    [39] D. Smirnova et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett., 123, 103901(2019).

    [40] M. A. Gorlach et al. Far-field probing of leaky topological states in all dielectric metasurfaces. Nat. Commun., 9, 909(2018).

    [41] A. Slobozhanyuk et al. Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces. Appl. Phys. Lett., 114, 031103(2019).

    [42] D. Leykam et al. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett., 121, 023901(2018).

    [43] S. Mittal et al. Photonic anomalous quantum Hall effect. Phys. Rev. Lett., 123, 043201(2019).

    [44] M. Li et al. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photonics, 14, 89-94(2020).

    [45] Y. H. Yang et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622-626(2019).

    [46] H. Jia et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science, 363, 148-151(2019).

    [47] B. Yang et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013-1016(2018).

    [48] J. Perczel et al. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett., 119, 023603(2017).

    [49] S. Barik et al. A topological quantum optics interface. Science, 359, 666-668(2018).

    [50] S. Mittal, E. A. Goldschmidt, M. Hafezi. A topological source of quantum light. Nature, 561, 502-506(2018).

    [51] C. He et al. Topological phononic states of underwater sound based on coupled ring resonators. Appl. Phys. Lett., 108, 031904(2016).

    [52] Y. G. Peng et al. Experimental demonstration of anomalous Floquet topological insulator for sound. Nat. Commun., 7, 13368(2016).

    [53] S. Afzal, V. Van. Topological phases and the bulk-edge correspondence in 2D photonic microring resonator lattices. Opt. Express, 26, 14567-14577(2018).

    [54] S. Afzal et al. Realization of anomalous Floquet insulators in strongly coupled nanophotonic lattices. Phys. Rev. Lett., 124, 253601(2020).

    [55] R. Islam, G. V. Eleftheriades. A planar metamaterial co-directional coupler that couples power backwards, 321-324, IEEE(2003).

    [56] C. Caloz, T. Itoh. A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics. IEEE Microw. Wirel. Compon. Lett., 14, 31-33(2004).

    [57] A. Lai, T. Itoh, C. Caloz. Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag., 5, 34-50(2004).

    [58] Y. Z. Wang et al. Time-domain study of vortexlike interface mode in metamaterials. Appl. Phys. Lett., 91, 221907(2007).

    [59] Z. W. Guo et al. Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials. Phys. Rev. Appl., 10, 064048(2018).

    [60] Z. W. Guo et al. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics, 036001(2021). https://doi.org/10.1117/1.AP.3.3.036001

    [61] Z. W. Guo, H. T. Jiang, H. Chen. Zero-index and hyperbolic metacavities: fundamentals and applications. J. Phys. D: Appl. Phys., 55, 083001(2022).

    [62] Y. Sun et al. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 112, 143903(2014).

    [63] Z. W. Guo et al. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 26, 627-641(2018).

    [64] N. Kaina et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature, 525, 77-81(2015).

    [65] Z. W. Guo et al. Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials. Sci. Rep., 7, 7742(2017).

    [66] Y. K. Zhou et al. Acoustic multiband double negativity from coupled single-negative resonators. Phys. Rev. Appl., 10, 044006(2018).

    [67] R. Keil et al. Universal sign control of coupling in tight-binding lattices. Phys. Rev. Lett., 116, 213901(2016).

    [68] Z. Liao et al. Localized surface magnetic modes propagating along a chain of connected subwavelength metamaterial resonators. Phys. Rev. Appl., 10, 034054(2018).

    [69] S. Ma, S. M. Anlage. Microwave applications of photonic topological insulators. Appl. Phys. Lett., 116, 250502(2020).

    [70] S. Y. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).

    [71] X. Y. Zhu et al. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys. Rev. Res., 2, 013280(2020).

    [72] S. Weidemann et al. Topological funneling of light. Science, 368, 311-314(2020).

    Zhiwei Guo, Xian Wu, Yong Sun, Haitao Jiang, Ya-Qiong Ding, Yunhui Li, Yewen Zhang, Hong Chen. Anomalous broadband Floquet topological metasurface with pure site rings[J]. Advanced Photonics Nexus, 2023, 2(1): 016006
    Download Citation