• Advanced Photonics
  • Vol. 3, Issue 1, 016004 (2021)
Lujun Huang1、†, Lei Xu2, Mohsen Rahmani2, Dragomir Neshev3, and Andrey E. Miroshnichenko1、*
Author Affiliations
  • 1University of New South Wales, School of Engineering and Information Technology, Canberra, Australian Capital Territory, Australia
  • 2Nottingham Trent University, School of Science and Technology, Department of Engineering, Advanced Optics and Photonics Laboratory, Nottingham, United Kingdom
  • 3The Australia National University, Research School of Physics, Department of Electronic Material Engineering, ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Canberra, Australian Capital Territory, Australia
  • show less
    DOI: 10.1117/1.AP.3.1.016004 Cite this Article Set citation alerts
    Lujun Huang, Lei Xu, Mohsen Rahmani, Dragomir Neshev, Andrey E. Miroshnichenko. Pushing the limit of high-Q mode of a single dielectric nanocavity[J]. Advanced Photonics, 2021, 3(1): 016004 Copy Citation Text show less
    References

    [1] Y. Akahane et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944-947(2003).

    [2] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [3] C. W. Hsu et al. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [4] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [5] A. Kodigala et al. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [6] S. T. Ha et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042-1047(2018).

    [7] Z. Liu et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2017).

    [8] Q. Song et al. Near-IR subwavelength microdisk lasers. Appl. Phys. Lett., 94, 061109(2009).

    [9] P. E. Landreman et al. Fabry–Perot description for Mie resonances of rectangular dielectric nanowire optical resonators. Opt. Express, 24, 29760-29772(2016).

    [10] D. J. Traviss et al. Antenna resonances in low aspect ratio semiconductor nanowires. Opt. Express, 23, 22771-22787(2015).

    [11] L. Huang, Y. Yu, L. Cao. General modal properties of optical resonances in subwavelength nonspherical dielectric structures. Nano Lett., 13, 3559-3565(2013).

    [12] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science., 354, aag2472(2016).

    [13] Y. S. Kivshar, A. E. Miroshnichenko. Meta-optics with Mie resonances. Opt. Photonic News, 28, 24-31(2017).

    [14] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [15] Q. H. Song, H. Cao. Improving optical confinement in nanostructures via external mode coupling. Phys. Rev. Lett., 105, 053902(2010).

    [16] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [17] M. V. Rybin et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [18] W. Chen, Y. Chen, W. Liu. Multipolar conversion induced subwavelength high-Q Kerker supermodes with unidirectional radiations. Laser Photonics Rev., 13, 1900067(2019).

    [19] S. Gladyshev, K. Frizyuk, A. Bogdanov. Symmetry analysis and multipole classification of eigenmodes in electromagnetic resonators for engineering their optical properties. Phys. Rev. B, 102, 075103(2020).

    [20] I. Volkovskava et al. Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators. Nanophotonics, 9, 3953-3963(2020).

    [21] M. Odit et al. Observation of supercavity modes in subwavelength dielectric resonators. Adv. Mater.(2020).

    [22] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [23] A. F. Sadreev, E. N. Bulgakov, I. Rotter. Bound states in the continuum in open quantum billiards with a variable shape. Phys. Rev. B, 73, 235342(2006).

    [24] K. N. Pichugin, A. F. Sadreev. Interaction between coaxial dielectric disks enhances the Q factor. J. Appl. Phys., 126, 093105(2019).

    [25] A. A. Lyapina et al. Bound states in the continuum in open acoustic resonators. J. Fluid. Mech., 780, 370-387(2015).

    [26] Y. Yu, L. Cao. Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures. Opt. Express, 20, 13847-13856(2012).

    [27] L. Cao et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater., 8, 643-647(2009).

    [28] J. Wiersig. Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A., 67, 023807(2003).

    [29] S. Q. Li, K. B. Crozier. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B, 97, 245423(2018).

    [30] P. Grahn, A. Shevchenko, M. Kaivola. Electromagnetic multipole theory for optical nanomaterials. New J. Phys., 14, 093033(2012).

    [31] W. Chen, Y. Chen, W. Liu. Singularities and Poincaré indices of electromagnetic multipoles. Phys. Rev. Lett., 122, 153907(2019).

    [32] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [33] M. I. Tribelsky, A. E. Miroshnichenko. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive index particles. Phys. Rev. A, 93, 053837(2016).

    [34] A. K. Gonzalez-Alcalde et al. Magnetic mirror metasurface based on the in-phase excitation of magnetic dipole andelectric quadrupole resonances. J. Appl. Phys., 125, 243103(2019).

    [35] K. Kim, E. Wolf. Non-radiating monochromatic sources and their fields. Opt. Commun., 59, 1-6(1986).

    [36] A. A. Bogdanov et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photonics, 1, 016001(2019).

    [37] L. Zhang et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun., 9, 713(2018).

    [38] A. E. Miroshnichenko et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [39] L. Xu et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light. Sci. Appl., 7, 44(2018).

    [40] V. Mylnikov et al. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano, 14, 7338-7346(2020).

    [41] K. Koshelev et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [42] M. P. Nezhad et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photonics, 4, 395-399(2010).

    [43] C. Huang et al. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [44] L. Carletti et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 033903(2018).

    [45] L. Xu et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv. Sci., 6, 1802119(2019).

    Lujun Huang, Lei Xu, Mohsen Rahmani, Dragomir Neshev, Andrey E. Miroshnichenko. Pushing the limit of high-Q mode of a single dielectric nanocavity[J]. Advanced Photonics, 2021, 3(1): 016004
    Download Citation