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Abstract. High-index dielectric resonators support different types of resonant modes. However, it is
challenging to achieve a high-Q factor in a single dielectric nanocavity due to the non-Hermitian property of
the open system. We present a universal approach of finding out a series of high-Q resonant modes in a single
nonspherical dielectric cavity with a rectangular cross section by exploring the quasi bound-state-in-the-
continuum (QBIC). Unlike conventional methods relying on heavy brutal force computations (i.e., frequency
scanning by the finite difference time domain method), our approach is built upon Mie mode engineering,
through which many high-Q modes can be easily achieved by constructing avoid-crossing (or crossing) of the
eigenvalue for pair-leaky modes. The calculated Q-factor of mode TE(5,7) can be up to Q theory ¼ 2.3 × 104 for
a freestanding square nanowire (NW) (n ¼ 4), which is 64 times larger than the highestQ-factor (Q theory ≈ 360)
reported so far in a single Si disk. Such high-Q modes can be attributed to suppressed radiation in the
corresponding eigenchannels and simultaneously quenched electric (magnetic) field at momentum space.
As a proof of concept, we experimentally demonstrate the emergence of the high-Q resonant modes
[Q ≈ 211 for mode TE(3,4), Q ≈ 380 for mode TE(3,5), and Q ≈ 294 for mode TM(3,5)] in the scattering
spectrum of a single silicon NW.
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1 Introduction
The Q-factor of a cavity is defined as the energy dissipation per
unit circle versus the energy stored in the resonator. In general,
it is desirable to have a high-Q factor optical resonance since
it allows us to achieve extreme energy confinement that can
significantly reduce the threshold of lasing and enhance non-
linearly the light–matter interaction. The widely used methods
of realizing high-Q modes are built upon the photonic crystal
cavity or whispery gallery cavity.1,2 Recently, another popular
concept called bound-state-in-the-continuum (BIC) has triggered

extensive interest because it is capable of realizing an infinitely
largeQ-factor in the extended system, such as a photonic crystal
slab or a dielectric metasurface.3–7 However, the on-chip lasing
source requires a high-Q resonator being of the subwavelength
scale.8 Subwavelength high-index dielectric nanostructure, such
as rectangular dielectric nanowire (NW) and cuboid,9–11 has
emerged as a promising platform to realize CMOS-compatible
nanophotonics since it supports Mie-type resonances (also
known as leaky mode resonance) with reduced dissipation
loss.12,13 The value of the Q-factor for leaky mode resonances,
however, is finite in a subwavelength dielectric resonator as a
non-Hermitian system. Recently, it has been demonstrated that
a single dielectric structure can support a high-Q cavity mode,
realized in several specific examples [also referred to as quasi-
BIC (QBIC)].14–21 Despite that, it is still necessary to develop a
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robust approach of finding out all high-Q modes in dielectric
cavities of arbitrary shapes, including structures with a rectan-
gular cross section for both two-dimensional (2D) and three-
dimensional (3D) cases (i.e., rectangular wire, cylinder with
finite thickness, and cuboid) since they can be easily fabricated
with current nanofabrication technology.

In this article, we report a robust method to find such a high-
Q mode in a single nonspherical cavity with a rectangular cross
section (i.e., rectangular NW, cuboid, and disk). We demonstrate
our analysis based on a rectangular NWunder transverse electric
(TE) polarization. It turns out that the high-Q modes can be
treated as a superposition of TEðm; lÞ and TEðm − 2; lþ 2Þ
or TEðm; lÞ and TEðmþ 2; l − 2Þ modes accompanied by the
avoid-crossing features of the real part of the eigenvalues at
a given size ratio R. Following these general rules, we can
immediately find and construct many different high-Q modes.
We demonstrate that the Q-factor of mode TE(5,7) in a square
NW can be as high as 2.3 × 104. The strong confinement of the
electric field corresponds to the suppression of the radiation in
limited leaky channels or radiation quenching to a minimum in
the momentum space. This conclusion can also be generalized
to other geometries, such as rectangular NW with transverse
magnetic polarization, single cylinder with finite thickness,
cuboid, etc. Moreover, we experimentally verify the existence
of high-Q modes supported by a single Si NW in the scattering
spectrum. Our results may find applications in boosting light–
matter interaction, such as the nonlinear optics effect, strong
coupling, and lasers.

2 Results and Discussion

2.1 General Design Principle of High-Q Modes

Originally, Friedrich and Wintgen suggested that interference
between two modes causes avoid-crossing and leads to the for-
mation of BIC with an infinite Q-factor.22 The avoided crossing
was used to realize BIC in quantum,23 optics,14–21,24 and acoustic
systems.25 When the system deviates from the ideal situation
(i.e., destructive interference among different diffraction chan-
nels), it will convert the ideal BIC into QBIC with a finite Q-
factor. The formation of BIC and QBIC can be well described by
the two-level system (see Sec. 1 and Fig. S1 in the Supplemental
Materials). Here, we demonstrated that from the leaky mode
perspective, many QBIC can be found in a single dielectric
nanocavity with a rectangular cross section by constructing
avoid-crossing of pair modes. Without loss of generality, we
consider the eigenmodes (named leaky modes) of a rectangular
NW with refractive index n ¼ 4 under TE polarization with the
electric field along the z direction while the background medium
is air. The cross section of the rectangle is in the XOY plane
while the NW is infinitely long along the z axis, assuming
the width and height of the NW are a and b, respectively.
The size ratio of the NW is defined as R ¼ b∕a. In previous
work,11,26,27 we have demonstrated that the leaky modes (also
known as Mie resonance mode) supported by the single
dielectric nanostructure play the dominant role in describing
its optical properties (i.e., absorption/scattering). All the leaky
modes can be rigorously calculated by the finite element method
(FEM) with commercial software COMSOL-Multiphysics.
The complex eigenvalues can describe them N ¼ nωb∕c ¼
Nreal − iN imag, where ω is the complex eigenfrequency of the
leaky mode and c is the speed of light. It allows expressing
the Q-factor in the following form Q ¼ Nreal∕ð2 × NimagÞ.

Linear dependence between Nreal and the size ratio R has been
shown for modes TEðm; lÞ,11 where m and l correspond to
the number of peaks of the electric field within the NW in
the x and y dimensions. The expression can be written as
Nreal ≈ ðm − 1ÞπRþ ðn − 1Þπ. Due to the linear relationship,
the avoided crossing of eigenvalues can be easily constructed
for a pair of modes TEðm; lÞ and TEðm − 2; lþ 2Þ or TEðm; lÞ
and TEðmþ 2; l − 2Þ while the size ratio is tuned. Consequently,
high-Q and low-Q modes are realized at the critical size ratio,
where avoided crossing occurs. Typically, high-Q and low-Q
modes can be divided into four categories (see Table S1 in the
Supplemental Materials): (1) type I: l ¼ mþ 2; (2) type II:
m ≤ l < mþ 2, (3) type III: l > mþ 2, and (4) type IV: l < m.

Figures 1(a) and 1(b) show Nreal and the Q-factor as a func-
tion of the size ratio R for modes TE(3,5) and TE(5,3) which
belong to type I. Interestingly, the Q-factor reaches its maximum
value of 3300 at R ¼ 1 for TE(3,5) while the avoid-crossing
occurs for Nreal in these two modes. Other high-Q modes fall
within the category of type I, such as TE(1,3) and TE(2,4),
can be found at the same critical ratio R ¼ 1 (see Fig. S2 in
the Supplemental Materials). Figures 1(c) and 1(d) show the
Q-factor and a∕λ (or ka∕2π) for mode TEðm;mþ 2Þ while
the value of m increases from 1 to 5. The Q-factor can be
up to 2.3 × 104 for mode TE(5,7) while the resonant wavelength
is still larger than the width of the square NW. Even higher
Q-factors can be obtained for TEðm;mþ 2Þ with m > 5. For
instance, for m ¼ 6, the Q-factor can get up to 2.98 × 105.
The resonant wavelength, however, will become smaller than
the width of the square NW. Thus, there is a balance between
the high-Q and the dimensions of the structure. Another inter-
esting point is that a∕λ shows a linear dependence on m. Such a
linear relationship can be explained from the ray optics perspec-
tive (see Sec. S2 and Fig. S3 in the Supplemental Materials).14,28

It can help to facilitate the process of finding modes even with
a higher Q-factor for large m.

Following the same approach, many high-Q modes belong-
ing to types II and III can be found. As an example of type II,
Figs. 1(e) and 1(f) show the Nreal and Q-factor as a function of
size ratio R for a pair of modes TE(5,2) and TE(3,4). Different
from the case of type I, the anticrossing feature appears at
R ¼ 0.855, and the Q factor for TE(3,4) reaches the maximum
value of 1309, while it is 33 for mode TE(5,2). More type II
high-Q modes are presented in Fig. S4 in the Supplemental
Materials. Note that the critical ratio R is always between
0 and 1 (see Fig. S5 in the Supplemental Materials). We also
plot the Q-factor and a∕λ for a high-Q mode TEðm;mþ 1Þ
as a function ofm. Similarly, theQ-factor increases sharply with
m and can reach the value of 2.94 × 104 for the mode TE(6,7).
We also found that a∕λ is directly proportional to m. Another
example of the type II mode TEðm;mÞ is shown in Fig. S6 in the
Supplemental Materials. The type III case is similar to type II
and, therefore, the relevant results are put in Fig. S7 in the
Supplemental Materials. For the type IV, note that the complex
eigenvalue N ¼ nωb∕c of TEðm; lÞ for the size ratio R ¼ b∕a is
the same as the eigenvalue N ¼ nωa∕c for TEðl; mÞ for the size
ratio R ¼ a∕b. Therefore, if type II or type III pair modes
TEðl; mÞ and TE(lþ 2, m − 2) display avoid-crossing features
at the critical ratio R and the Q-factor of TEðl; mÞ has a maxi-
mum value, TEðm; lÞ and TEðm − 2; lþ 2Þ will show avoided
crossing at 1∕R, and TEðm; lÞ will have the largest Q-factor.

We confirm the existence of such high-Q modes at the criti-
cal size ratio by calculating the energy density mapping and
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scattering efficiency mapping versus both the size ratio and the
normalized frequency ka. Here, the incident wave is TE polari-
zation with the electric field along the z axis. For some leaky
modes such as TE(2,4) and TE(4,2), the eigenfield presents
an antisymmetric distribution, and they cannot be excited by
a normal incident wave. Therefore, the incident angle is set to
15 deg with respect to the y axis to excite all of the eigenmodes.
For a given size ratio, each peak in the energy density can be
perfectly correlated to one of the leaky modes. From Fig. 2(a),

an excellent agreement can be found between the resonant peaks
in the mapping and the real part of the eigenvalue Nreal ¼ ka for
pair modes TE(3,5) and TE(5,3). Furthermore, the line width of
the resonant peak indeed becomes the narrowest at R ¼ 1,
which means that the Q-factor reaches the maximum value.
The narrowing effect of linewidth can also be found in scattering
spectrum mapping, as shown in Fig. 2(b). A similar phenome-
non can also be applied to other pair modes TE(3,4) and TE(5,2)
[Figs. 4(c) and 4(d)], TE(2,3) and TE(4,1) [Figs. S8(a) and S8(b)
in the Supplemental Materials], TE(2,4) and TE(4,2) [Figs.
S8(c) and S8(d) in the Supplemental Materials].

2.2 Physical Explanation of High-Q Mode by
Multipole Decomposition

To get a better insight into radiative properties of the high-Q
modes, we employ the multipole expansion.29–31 Here, we again
consider the case of NWat oblique incidence (θ ¼ 15 deg) with
TE polarization. Figure 3(a) shows scattering efficiency contrib-
uted by multipoles for a square NW. Two resonant peaks can be
observed at ka ¼ 3.89 and ka ¼ 3.97, which are related to the
low-Q mode TE(5,3) and high-Q mode TE(3,5). The scattering
efficiency around ka ¼ 3.97 is dominated by a single multipole,
electric quadrupole (m ¼ 2), exhibiting a sharp Fano profile.32,33

In contrast, there are two dominant multipoles in the scattering
efficiency for the low-Q mode around ka ¼ 3.89. This is also
confirmed by the multipole analysis on the two eigenmodes
TE(3,5) and TE(5,3). Indeed, from Fig. 3(b), there are two
radiation channels (m ¼ 0 and m ¼ 4) for mode TE(5,3), but
only one dominant radiation channel (m ¼ 2) exists for mode
TE(3,5). Each multipole can be considered as an independent
channel for the radiating decay. Thus, coupling to more leaky
channels with a larger radiation intensity will, in general, reduce
the Q-factor. That is why it is expected that high-Q modes
should couple to only one radiative channel with a small leak-
age, described by a single multipole.

Fig. 2 Total energy density and scattering efficiency for the rec-
tangular NW with different size ratios. (a), (b) Logarithm total
energy density and scattering efficiency mapping versus R and
ka. Two modes TE(3,5) and TE(5,3) are labeled as black and red
circles. (c), (d) Logarithm of total energy density and scattering
efficiency mapping versus R and ka. Two modes TE(3,4) and
TE(5,2) are labeled as black and red circles.

Fig. 1 Properties of the high-Q modes in the single rectangular NW. (a), (b) Real part andQ-factor
of the eigenvalue of modes TE(3,5) and TE(5,3) (type I) as functions of size ratio R. (c), (d) Q-
factor and a∕λ as functions of m for high-Q mode TEðm;m þ 2Þ at the critical ratio. (e), (f) Real
part and Q-factor of the eigenvalue of modes TE(3,4) and TE(5,2) versus the size ratio R.
(g), (h) Q-factor and a∕λ, as functions of m for high-Q mode TEðm;m þ 1Þ at the critical ratio.
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Importantly, we can also find these radiation channels by
carefully comparing its eigenfield distribution to the electric
field distribution of the eigenmode for an infinite cylinder.
For example, for mode TE(3,5), its eigenfield may be regarded
as a superposition of eigenmodes TE22 and TE61 for the cylinder
in Fig. 3(i), which serve as the orthogonal basis for the multipole
expansion method. The radiation contribution of TE22 is much
larger than that of TE61 from the field distribution. That also
explains that m ¼ 2 dominates the radiation for TE(3,5). At
the same time, the eigenfield of TE(5,3) may be viewed as
the superposition of eigenmodes TE03 and TE42 for the cylinder,
as shown in Fig. 3(j). Moreover, the radiation intensity for both
channels in TE(3,5) is much lower than the counterparts in
TE(5,3). From the perspective of the radiation channel, we
may attribute the extreme confinement of TE(3,5) to the fact
that these two leaky channels are more confined compared with
leaky channels of TE(5,3). This explanation also works for the

modes TE(3,4) and TE(5,2) belonging to the category of type II
[see Figs. 3(e) and 3(f) and Fig. S9 in the Supplemental
Materials]. Ideally, the eigenmode with the closest field profile
to the eigenmode TEml (m > 1 and l ¼ 1) in the cylinder will
always have a high Q-factor because there is only one leaky
channel with the minimum radiation intensity. The larger mode
number m is, the higher the Q-factor. This concept has been
successfully applied to design the whisper gallery mode with
an ultrahigh Q-factor.2 We also find a similar phenomenon in
a relatively low-order mode. For example, mode TE(2,4) for
NW with R ¼ 1 and TE(2,3) for NW with R ¼ 0.775 reach
maximum values of 885 and 145, respectively. Multipole analy-
sis of the eigenfield indicates that only one radiation channel
exists for these two modes (see Fig. S10 in the Supplemental
Materials). The major leaky channels for TE(2,3) and TE(2,4)
are eigenmodes TE31 and TE41 of the cylinder, respectively
(see Figs. S11(a) and S11(b) and Figs. S11(e) and S11(f) in

Fig. 3 Multipole analysis of the high-Q modes. (a) Multipolar contribution on the scattering cross
section of the square NW under the excitation oblique incidence plane wave (θ ¼ 15 deg).
(b), (c) Multipole analysis and Fourier transformation on the eigenfields of two modes TE(3,5)
and TE(5,3). (d), Eðk0Þ obtained from a Fourier transformation of eigenfields for two modes.
(e) Multipolar contribution on scattering cross section of the rectangular NW with R ¼ 0.855
excited by the obliquely incident plane wave (θ ¼ 15 deg). (f), (g) Multipole analysis and Fourier
transformation on the eigenfields of two modes TE(3,4) and TE(5,2). (h) Eðk0Þ obtained from
Fourier transformation of eigenfields for two modes. (i) Decomposition of TE(3,5) for the rectan-
gular NW into TE61 and TE22 of eigenmodes for the circular NW. (j) Decomposition of TE(5,3) for
the rectangular NW into TE42 and TE03 of eigenmodes for the circular NW.

Huang et al.: Pushing the limit of high-Q mode of a single dielectric nanocavity

Advanced Photonics 016004-4 Jan∕Feb 2021 • Vol. 3(1)

https://doi.org/10.1117/1.AP.3.1.016004.s01
https://doi.org/10.1117/1.AP.3.1.016004.s01
https://doi.org/10.1117/1.AP.3.1.016004.s01
https://doi.org/10.1117/1.AP.3.1.016004.s01


the Supplemental Materials]. Both have better field confinement
than eigenmode TE12 and eigenmode TE22 that are main radi-
ation channel of modes TE(4,1) and TE(4,2), respectively [see
Figs. S11(c) and S11(d) and Figs. S11(g) and S11(h) in the
Supplemental Materials]. In fact, the suppressed electric dipole
that is realized by an in-phase magnetic dipole and an electrical
quadrupole34 is essential for building a magnetic mirror.

The radiative properties of an arbitrary source can also be
analyzed in momentum space. It is known that only the nonzero
current “on-the-shell” in k-space contributes to the far-field
radiation.35 Thus, it is instructive to analyze the electric field
in momentum space of the high-Q mode at the critical ratio
to get a more profound physical insight. To do this, we perform
the Fourier transform on the eigenfield of the high-Q modes
shown in Figs. 3(c) and 3(g). Here, it is worth pointing out that
the electric field Eðk0Þ contributes to the outward radiation only
when k2x þ k2y ¼ k20. Therefore, we extract Eðk0Þ on the white
circle boundary k2x þ k2y ¼ k20 and plot them in Figs. 3(d) and
3(h). Indeed, the radiation field Eðk0Þ of the high-Q mode
has a much lower amplitude, and the radiation channel is nar-
rower. For the resonant mode with an extremely high Q-factor,
Eðk0Þ approaches zero at the circle boundary (k2x þ k2y ¼ k20).

2.3 High-Q Modes in Rectangular NW for TM Case

The above phenomenon can also be generalized to the rectan-
gular NW with TM polarization. However, it is interesting that
avoid-crossing is not always the prerequisite of realizing a
high-Q mode in TM cases. For example, as shown in Figs. 4(a)
and 4(b), mode TM(2,3) reaches the maximum Q-factor while
crossing happens between pair modes TM(2,3) and TM(4,1).
More crossing cases can be found for pair modes TM(3,3)
and TM(5,1) in Figs. S12(a) and S12(b) in the Supplemental
Materials, TM(4,4) and TM(6,2) in Figs. S12(c) and S12(d)
in the Supplemental Materials. Figures 4(c) and 4(d) show the
case of pair modes TM(3,4) and TM(5,2), where the high-Q
mode happens at the avoided crossing. More avoided crossing

cases can be found between modes TMðm;mþ 2Þ and
TMðmþ 2; mÞ, such as TM(2,4) and TM(4,2) in Figs. 4(e) and
4(f), and TM(3,5) and TM(5,3) in Figs. S13(a) and S13(b) in the
Supplemental Materials. It is entirely different from the cases of
TE polarization, in which avoid-crossing is the necessary con-
dition to realize the high-Q mode. Such a difference is also re-
flected in the mode evolutions (see Fig. S14 in the Supplemental
Materials). For TE(2,3) and TE(4,1), the modes interchange
with each other while the structure crosses the critical size ratio
may suggest a relatively strong coupling between these two
modes.36,37 Nevertheless, modes TM(2,3) and TM(4,1) remain
similar field profiles, which may indicate a weak coupling
between them (see Sec. S3, Table S2, and Fig. S15 in the
Supplemental Materials). In addition, we also perform the multi-
pole analysis on the eigenmode at different size ratios for both
TE and TM cases. It can be found that the channel m ¼ 1 for
both cases is reduced to a minimum at a critical size ratio (see
Fig. S16 in the Supplemental Materials). Thus, the high-Q
mode, on the other hand, can be regarded as an anapole state38,39

for which the radiation can be significantly quenched due to
the total elimination of one leaky channel. In addition, Q-factor
and a∕λ versus m for the high-Q mode TMðm;mþ 2Þ,
TMðm;mþ 1Þ, and TMðm;mÞ are calculated and shown in
Fig. S17 in the Supplemental Materials. The Q-factor can be
up to 2.15 × 104 for mode TM(5,5) with a ¼ 0.975λ (subwave-
length scale). Moreover, similar to the TE case, almost linear
dependence can be found between m and a∕λ. Also, we plot the
critical size ratio versus m for high-Q mode TMðm;mþ 2Þ,
TMðm;mþ 1Þ, and TMðm;mÞ, which can be found in Fig.
S18 in the Supplemental Materials. The high-Q mode for the
TM case is also well explained by multipole analysis on the
eigenmode (see Fig. S19 in the Supplemental Materials).
Importantly, these high-Qmodes are not limited to the dielectric
structure with the high refractive indices, such as for 4. Figure
S20 in the Supplemental Materials shows the different high-Q
modes of a rectangular NW as the refractive index varies from
2 to 8. One interesting thing is that the Q-factor does not always
monotonically increase with the increasing refractive index. For
example, the Q-factor for the high-Q mode TE(2,4) increases
much faster than that of the high-Q mode TE(3,5), which
becomes saturated for n ≥ 4. Therefore, the refractive index-
dependentQ-factor can help us to immediately find which mode
should be chosen when a high-Q factor is desired for semicon-
ductors with a different refractive index.

2.4 High-Q Modes in a Single Nanoparticle

So far, we only discuss how to find the QBIC-induced high-Q
mode in a single rectangular NW. The above approach can also
be applied to a 3-D nonspherical structure, including the cuboid
and cylinder with finite thickness. Here, we use a single cuboid
as an example to demonstrate how to find a high-Q mode. For
the sake of convenience and without loss of generality, a ¼ b
and R ¼ c∕a are assumed. Also, the mode number along x is
chosen as 1 for simplicity. We first consider magnetic eigenm-
odes M(1,2,3) and M(1,4,1) in the YOZ plane. Remarkably,
from Figs. 5(a) and 5(b), a similar anticrossing feature can
be observed for these two modes, and the Q-factor reaches a
maximum of 325 at R ¼ 0.795. The results of multipole analy-
sis on the modes M(1,4,1) and M(1,2,3) indicate that the main
radiation channels are l ¼ 1 and m ¼ 2, l ¼ 3 and m ¼ 1, re-
spectively [see Fig. 6(a)]. Careful examination on the eigenfield

Fig. 4 High-Q mode for the TM case. (a), (b) Real part and
Q-factor of the eigenvalue for modes TM(2,3) and TM(4,1) as
functions of the size ratio R . (c), (d) Real part and Q-factor of
the eigenvalue for modes TM(3,4) and TM(5,2) versus the size
ratio R .
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distribution tells us that these two channels can be linked to
eigenmodes M12 and M31 for sphere nanoparticles. Eðk0Þ ob-
tained from a Fourier transform on the eigenfield has a much
lower amplitude for M(1,2,3) than that of mode M(1,4,1)
[see Fig. 6(b)]. It again confirms that the radiation is suppressed
to a minimum. Another example of high-Q and low-Q modes,
M(1,4,2) and M(1,2,4), are shown in Figs. 5(c) and 5(d).
The Q-factor is up to >1000. Different from the 2D NW case,
a single cuboid can support both electric and magnetic eigen-
modes. The conclusion drawn from magnetic modes can also
be applied to electric modes. Following a similar approach, we
find another two electric high-Q modes, E(1,2,3) [see Figs. 5(e)
and 5(f)] and E(1,2,4) [see Figs. 5(g) and 5(h)]. However,
these two are a little bit different. The mode features for E(1,2,3)
and E(1,4,1) are crossing while anticrossing occurs for pair
electric modes E(1,4,2) and E(1,2,4). Other high-Q modes in
a single cuboid can be found in Fig. S21 in the Supplemental
Materials. Besides, we want to point out that such a strategy also
works for a cuboid with a ≠ b. Those high-Q modes can

be constructed using a similar way. In fact, we can treat the sin-
gle cuboid as a truncated rectangular NW. When the length of
the z axis becomes finite for the NW, we will expect the increase
of Q-factor because there is confinement in the third dimension
for the 3D cuboid compared to the NW, which is demonstrated
in Fig. S22 in the Supplemental Materials. Last, another typical
example of a single particle is a cylinder with finite thickness.
We present two pairs of magnetic high-Qmodes of a single disk
in Fig. S23 in the Supplemental Materials. One is magnetic
mode M(1,2,3) and M(1,4,1) while the other is magnetic mode
M(1,2,4) and M(1,4,2). Similarly, electric high-Q modes, such
as E(1,2,3) and E(1,2,4), can be found and shown in Fig. S24 in
the Supplemental Materials. The design principles are the same,
and we shall not repeat them here. Note that in Refs. 17 and 36,
the modes M(1,2,3) and M(1,4,1) are also described as Mie
mode and Fabry–Perot mode. However, not all pair high-Q
and low-Q modes can be regarded as Mie mode and Fabry–
Perot mode. For example, both modes M(1,4,2) and M(1,2,4)
belong to Mie mode. A similar phenomenon can also be found
in a single 2D rectangular NW. For example, pair modes TE(2,4)
and TE(4,2), TE(3,4) and TE(5,2), TE(3,5) and TE(5,3), TM(2,4)
and TM(4,2), TM(3,4) and TM(5,2), cannot be categorized
into Mie mode and Fabry–Perot mode. Therefore, our strategy
represents the perfect solution of finding all high-Q modes in
a single dielectric nanocavity with a rectangular cross section.

3 Experimental Verification of High-Q Mode
in Single Si NW

We move to experimentally demonstrate the high-Q factor by
exploring the scattering characteristics of a single rectangular
silicon NWon a quartz substrate. Mode TE(3,4) is used to real-
ize the high-Q mode at 1390 nm. The length of Si NW is 20 μm
in real fabrication to mimic the behavior of NW (see Fig. S22 in

Fig. 6 (a) Multipole analysis on the eigenfields for two modes of
the cuboid, M(1,4,1) and M(1,2,3). (b) Eðk0Þ distribution for two
modes.

Fig. 5 High-Q mode for the single 3D nanoparticle. (a), (b) Real part and Q-factor of the eigen-
value for the magnetic eigenmode M(1,2,3) and M(1,4,1) in the single cuboid as functions of the
size ratio R ¼ c∕a while a ¼ b. (c), (d) Real part and Q-factor of the eigenvalue for the magnetic
eigenmode M(1,2,4) and M(1,4,2) as functions of the size ratio R ¼ c∕a of a cuboid. (e), (f) Real
part and Q-factor of the eigenvalue for the electric eigenmode E (1,2,3) and E (1,4,1) as functions
of the size ratio R ¼ c∕a of the cuboid. (g), (h) Real part and Q-factor of the eigenvalue for the
electric eigenmode E (1,2,4) and E (1,4,2) as functions of the size ratio R ¼ c∕a of a cuboid.
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the Supplemental Materials). The fabrication of a series of NWs
with different widths is described as follows. First, the amor-
phous silicon thin film with a thickness of 825 nm is deposited
on glass substrate with plasma-enhanced chemical vapor depo-
sition (Oxford PlasmaLab System 100). Subsequently, positive
electroresist was spin-coated over the film. We then exposed the
resist by applying electron-beam lithography (Raith 150) and
developed. A 50-nm Cr film was evaporated onto the sample,
followed by the lift-off process to generate Cr masks. Using re-
active ion etching processes, Cr rectangles were transferred to
the silicon film. The residual Cr disks were further removed by
wet Cr etching. The scatterings of the fabricated sample were
measured using a home-built white-light spectroscopy setup
in a confocal configuration, as shown in Fig. 7. The sample
was backside illuminated by a white-light source (fiber-coupled
tungsten halogen light bulb). A polarizer is put between the

focal lens and light source to control the linear polarization of
the incidence wave. Using a 20 × NA ¼ 0.4 objective and a di-
aphragm, the light transmitted through the sample in the normal
direction was then collected and directed to the spectrometer
(Princeton Instruments Acton SP 2300 monochromator with
Andor DU490A-1.7 InGaAs array detector). Considering there
is no absorption from the fabricated silicon material in the NIR
range, the scattering cross sections were then estimated using
the approximate relation Csca ∼ 1 − T, where T is the measured
transmission (normalized to the transmission of the substrate
when no NW is presented) in the normal direction.

Figure 8(a) shows the schematic drawing of the dielectric
NWon quartz substrate, while Figs. 8(b) and 8(c) show the mea-
sured and simulated scattering spectrum of a single NW with
different size ratios. The structure is illuminated by an incidence
wave with a TE polarization (the electric field is parallel to the

Fig. 7 Schematic drawing of measurement system.

Fig. 8 Experimental verification of high-Q mode in the single silicon NW on quartz. (a) Schematic
drawing of the single Si NW on a quartz substrate under normal incidence for TE polarization.
(b) Experimentally measured scattering spectrum for the single NW with a ¼ 970 nm and
b ¼ 825 nm. Top inset is the eigenfield E distribution of mode TE(3,4) while the bottom inset
is an SEM image of fabricated Si NW (the bar in the inset is 500 nm). (c) Simulation and measured
scattering spectra for the single NW with different widths while the thickness of the NW is fixed as
825 nm. High-Q modes are indicated with arrows. (d) Extracted Q-factor and (e) N real for pair
modes TE(3,4) and TE(5,2) as a function of the size ratio.
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infinite axis of the NW). Good agreement can be found between
numerical calculation based on the FEM method and experi-
mental results. The resonant frequency and Q-factor are ex-
tracted by the standard Fano fitting procedure (see Sec. 4 and
Figs. S25 and S26 in the Supplemental Materials).22 It can be
also found that the resonant frequency shows avoided crossing
at R ¼ 0.868, around which the Q-factor reaches a maximum
value of 211. A slight shift of the critical size ratio may be attrib-
uted to the imperfect vertical sidewall of the NW. The measured
Q-factor is lower than the theoretical prediction because of the
presence of glass substrate, which reduces the index contrast
and causes more leakage into the substrate. Also, the refractive
index of Si here is 3.36, lower than the value of n ¼ 4we used in
the previous discussion. These two combined effects make the
measured Q-factor reduce six times compared with the theoreti-
cal prediction shown in Fig. 1(f). Note that the Q-factor can be
further improved to about 746 by suspending the NW, which
can be realized by wet etching SiO2 underneath using HF acid.
We also demonstrate that the Q-factor for the mode TE(3,5) can
reach 380 for a silicon NW on quartz substrate with the thick-
ness being 1130 nm (see Fig. S27 in the Supplemental
Materials) while the Q-factor can be up to 294 for TM(3,5)
(see Fig. S28 in the Supplemental Materials). Here, we want to
point out that the measured Q-factor is comparable to that of
QBIC in Refs. 40–42. The higher Q-factor can be realized with
high-order QBIC in a single cuboid or disk, such as M(1,2,4).
Also, the Q-factor can be further improved by putting a dielec-
tric cuboid or disk on epsilon near zero substrate or putting a
mirror around the cuboid or disk.41,42

4 Conclusion
We developed a robust approach to explore high-Q super-cavity
modes in a single dielectric structure with a rectangular cross
section, which includes a 2D rectangular NW, 3D disk, and
cuboids. Such supercavity modes, also called as a quasi bound-
state-in-the-continuum, are found by constructing the avoid-
crossing or crossing for pair leaky modes (high-Q and low-Q
modes). TheQ-factor of TE(5,7) can be up to 2.3 × 104 even for
a square NW with n ¼ 4. The strong confinement of the electric
field for these supercavity modes can be explained as the
suppression of the radiation in limited leaky channels or radiation
quenching to a minimum in the momentum space. We also
experimentally confirm this type of high-Q mode in a single
Si subwavelength NW. Our findings provide a general guiding
principle to design an extreme high-Q mode with a relatively
small material volume and will find applications in lasing,40,43 en-
hanced nonlinear harmonic generation,41,44,45 and strong coupling.
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