• Journal of Semiconductors
  • Vol. 42, Issue 4, 041304 (2021)
Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, and Jinsong Xia
DOI: 10.1088/1674-4926/42/4/041304 Cite this Article
Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, Jinsong Xia. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 2021, 42(4): 041304 Copy Citation Text show less
References

[1] D Marpaung, C Roeloffzen, R Heideman et al. Integrated microwave photonics. Laser Photonics Rev, 7, 506(2013).

[2] W N Ye, Y L Xiong. Review of silicon photonics: History and recent advances. J Mod Opt, 60, 1299(2013).

[3] D Thomson, A Zilkie, J E Bowers et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

[4] J J G M van der Tol, Y Q Jiao, L F Shen et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Top Quantum Electron, 24, 1(2018).

[5] C Wang, M Zhang, B Stern et al. Nanophotonic lithium niobate electro-optic modulators. Opt Express, 26, 1547(2018).

[6] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

[7] Y He, Q F Yang, J W Ling et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).

[8] Y Sua, J Y Chen, Y P Huang. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide. Opt Lett, 43, 2965(2018).

[9] T J Wang, C H Chu, C Y Lin. Electro-optically tunable microring resonators on lithium niobate. Opt Lett, 32, 2777(2007).

[10] J Chiles, S Fathpour. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 1, 350(2014).

[11] V E Stenger, J Toney, A PoNick et al. Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators. European Conference on Optical Communication (ECOC), 1(2017).

[12]

[13] C Wang, M Zhang, M Yu et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun, 10, 978(2019).

[14] M X Li, J W Ling, Y He et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 11, 4123(2020).

[15] S Han, L Cong, Y K Srivastava et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv Mater, 31, e1901921(2019).

[16] M Xu, M He, H Zhang et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun, 11, 3911(2020).

[17] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).

[18] T Herr, V Brasch, J D Jost et al. Temporal solitons in optical microresonators. Nat Photonics, 8, 145(2014).

[19] P Marin-Palomo, J N Kemal, M Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

[20] R DeSalvo, A A Said, D J Hagan et al. Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J Quantum Electron, 32, 1324(1996).

[21] M Zhang, C Wang, R Cheng et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

[22] M Zhang, B Buscaino, C Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

[23] A Pan, C R Hu, C Zeng et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt Express, 27, 35659(2019).

[24] K Liu, C Ye, S Khan et al. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev, 9, 172(2015).

[25] A Faraon, J Vučković. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl Phys Lett, 95, 043102(2009).

[26] B R Bennett, R A Soref, J A del Alamo. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 26, 113(1990).

[27] C Baker, W Hease, D T Nguyen et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt Express, 22, 14072(2014).

[28] L Midolo, A Schliesser, A Fiore. Nano-opto-electro-mechanical systems. Nat Nanotechnol, 13, 11(2018).

[29] R S Weis, T K Gaylord. Lithium niobate: Summary of physical properties and crystal structure. Appl Phys A, 37, 191(1985).

[30]

[31] S B Gong, G Piazza. Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theory Tech, 61, 403(2013).

[32] G Poberaj, H Hu, W Sohler et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev, 6, 488(2012).

[33] W T Jiang, R N Patel, F M Mayor et al. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845(2019).

[34] L T Cai, A Mahmoud, M Khan et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 7, 1003(2019).

[35] L B Shao, M J Yu, S Maity et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498(2019).

[36]

[37] J T Nagy, R M Reano. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt Mater Express, 9, 3146(2019).

[38] C Wang, C Langrock, A Marandi et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).

[39] Y F Niu, C Lin, X Y Liu et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett, 116, 101104(2020).

[40] A Rao, A Rao, A Rao et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt Express, 27, 25920(2019).

[41] J J Lu, J B Surya, X W Liu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 6, 1455(2019).

[42] J Y Chen, Z H Ma, Y Sua et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244(2019).

[43] D Pohl, M R Escalé, M Madi et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat Photonics, 14, 24(2020).

[44] N Yao, N Yao, J X Zhou et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt Express, 28, 12416(2020).

[45] I Krasnokutska, J L J Tambasco, A Peruzzo. Nanostructuring of LNOI for efficient edge coupling. Opt Express, 27, 16578(2019).

[46] L Y He, L Y He, M Zhang et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt Lett, 44, 2314(2019).

[47] Y Pan, S H Sun, M Y Xu et al. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators. Conference on Lasers and Electro-Optics, JTh2B.10(2020).

[48]

Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, Jinsong Xia. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 2021, 42(4): 041304
Download Citation