• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210452 (2021)
Ruidong Wang1、2、3, Jun Ma1、2, Chenglong Wang1、2、*, and Tianzhi Yu3
Author Affiliations
  • 1Collaborative Innovation Center for Technology and Equipment of Concentrated Solar Power, Lanzhou Jiaotong University, Lanzhou 730070, China
  • 2National Engineering Research Center for Technology and Equipment of Environmental Deposition, Lanzhou Jiaotong University, Lanzhou 730070, China
  • 3Key Laboratory of Opto-Technology and Intelligent Control, Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China
  • show less
    DOI: 10.3788/IRLA20210452 Cite this Article
    Ruidong Wang, Jun Ma, Chenglong Wang, Tianzhi Yu. Progress of linear Fresnel concentrator heat collection system[J]. Infrared and Laser Engineering, 2021, 50(11): 20210452 Copy Citation Text show less
    References

    [1] E Kabir, P Kumar, S Kumar, et al. Solar energy: Potential and future prospects. Renewable & Sustainable Energy Reviews, 82, 894-900(2018).

    [2] E Bellos. Progress in the design and the applications of linear Fresnel reflectors-A critical review. Thermal Science and Engineering Progress, 10, 112-137(2019).

    [3] T S Ge, R Z Wang, Z Y Xu, et al. Solar heating and cooling: Present and future development. Renewable Energy, 126, 1126-1140(2017).

    [4] Yujiong Gu, Zhi Geng, Chen Zhang, et al. Review on key technologies of concentrating solar thermal power generation systems. Thermal Power Generation, 46, 6-13(2017).

    [5] J Sun, Z Zhang, L Wang, et al. Comprehensive Review of line-focus concentrating solar thermal technologies: Parabolic Trough Collector (PTC) vs Linear Fresnel Reflector (LFR). Journal of Thermal Science, 29, 1097-1124(2020).

    [6] Jun Ma, Chonglong Wang, Yangjun Xia. Research progress on secondary concentrator for linear Fresnel reflector. Sci Sin Tech, 50, 997-1008(2020).

    [7] V A Baum, R R Aparasi. High-power solar installations. Solar Energy, 1, 6-12(1957).

    [8] H Beltagy, D Semmar, C Lehaut, et al. Theoretical and experimental performance analysis of a Fresnel type solar concentrator. Renewable Energy, 101, 782-793(2017).

    [9] C Choudhury, H K Sehgal. A fresnel strip reflector-concentrator for tubular solar-energy collectors. Applied Energy, 23, 143-154(1986).

    [10] B S Negi, T C Kandpal, S S Mathur. Optical and thermal performance evaluation of a linear Fresnel reflector solar concentrator. Solar & Wind Technology, 6, 589-593(1989).

    [11] B S Negi, T C Kandpal, S S Mathur. Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber. Solar & Wind Technology, 7, 379-392(1990).

    [12] S S Mathur, T C Kandpal, B S Negi. Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—II. Mirror elements of equal width. Energy Conversion & Management, 31, 221-232(1991).

    [13] D Feuermann, J M Gordon. Analysis of a two-stage linear Fresnel reflector solar concentrator. Journal of Solar Energy Engineering, 113, 272-279(1991).

    [14] Du Chunxu, Wang Pu, Ma Chongfang, et al. Optical geometric method f LFR mirr field arrangement without shading blocking[J]. Acta Optica Sinica, 2010, 30(11): 32763282. (in Chinese)

    [15] Du Chunxu, Wang Pu, Ma Chongfang, et al. Vect analysis of the geometric relationship of LFR[J]. Acta Energiae Solaris Sinica, 2011, 32(10): 14661469. (in Chinese)

    [16] Chunxu Du, Pu Wang, Yuting Wu, et al. Performance analysis of shading and blocking of linear Fresnel reflector mirror field. Acta Energiae Solaris Sinica, 34, 1868-1876(2013).

    [17] D R Mills, G L Morrison. Compact Linear Fresnel Reflector solar thermal powerplants. Solar Energy, 68, 263-283(2000).

    [18] V Sharma, S Khanna, J K Nayak, et al. Effects of shading and blocking in linear Fresnel reflector field. Energy, 94, 633-653(2016).

    [19] M J Montes, C Rubbia, R Abbas, et al. A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power. Energy, 73, 192-203(2014).

    [20] Jinghui Song, Jishuai Ma, Zhigang Zhan. Optical analysis and of of linear Fresnel collector. Journal of Chinese Society Power Engineering, 36, 563-568(2016).

    [21] Song Jinghui, Ma Jishuai, Dai Yanjun. Design they optical analysis of the linear Fresnel collect''s mirr field[J]. Renewable Energy Resources, 2016, 34(1): 18. (in Chinese)

    [22] R Abbs, A Sebastlan, M J Montes, et al. Optical features of linear Fresnel collectors with different secondary reflector technologies. Applied Energy, 232, 386-397(2018).

    [23] J Zhu, H Huang. Design and thermal performances of semi-parabolic linear Fresnel reflector solar concentration collector. Energy Conversion and Management, 77, 733-737(2014).

    [24] S Momeni, A Menbari, A A Alemrajabi, et al. Theoretical performance analysis of new class of Fresnel concentrated solar thermal collector based on parabolic reflectors. Sustainable Energy Technologies and Assessments, 31, 25-33(2019).

    [25] Qiu Yu, He Yaling, Cheng Zedong. Optical perfmance investigation optimization of a linear Fresnel reflect solar collect[J]. J Eng Thermophys, 2015, 36(12): 25512556. (in Chinese)

    [26] D Pulido-Iparraguirre, L Valenzuela, J Fernández-Reche, et al. Design, manufacturing and characterization of linear Fresnel reflector's facets. Energies, 12, 2795(2019).

    [27] Shaoxuan Pu, Chaofeng Xia. End-loss and compensation of linear Fresnel collectors. Transactions of the CSAE, 27, 282-285(2011).

    [28] E Bellos, C Tzivanidis, M A Moghimi. Reducing the optical end losses of a linear Fresnel reflector using novel techniques. Solar Energy, 186, 247-256(2019).

    [29] M Yang, Y Zhu, R A Taylor. End losses minimization of linear Fresnel reflectors with a simple, two-axis mechanical tracking system. Energy Conversion and Management, 161, 284-293(2018).

    [30] Pulido-Iparraguirre Diego, Valenzuela Loreto, Serrano-Aguilera Juan-José, et al. Optimized design of a linear Fresnel reflector for solar process heat applications. Renewable Energy, 131, 1089-1106(2019).

    [31] S Jie, R Wang, H Hui, et al. An optimized tracking strategy for small-scale double-axis parabolic trough collector. Applied Thermal Engineering, 112, 1408-1420(2017).

    [32] Z D Cheng, X R Zhao, Y L He. Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications. Applied Energy, 224, 682-697(2018).

    [33] Jingjing Men, Xueru Zhao, Yakun Leng, et al. Study on multi-objective optimization of optical comprehensive performance of linear Fresnel reflector collectors. Journal of Engineering Thermophysics, 41, 1706-1711(2020).

    [34] W Qu, R Wang, H Hong, et al. Test of a solar parabolic trough collector with rotatable axis tracking. Applied Energy, 207, 7-17(2017).

    [35] A Barbon, C Bayon-Cueli, L Bayon, et al. Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector. Renewable Energy, 162, 43-54(2020).

    [36] Y Qiu, Y L He, Z D Cheng, et al. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Applied Energy, 146, 162-173(2015).

    [37] Suying Yan, Zehui Wei, Jing Ma, et al. Effections of dust accumulation on reflectance and heat properties of linear Fresnel concentrator system. Acta Energiae Solaris Sinica, 40, 766-771(2019).

    [38] X Zhao, Z Chen, S Yan, et al. Influence of dust accumulation on the solar reflectivity of a linear Fresnel reflector. Journal of Thermal Science, 30, 1526-1540(2021).

    [39] Chenglong Wang, Jun Ma, Duowang Fan. Arrangment and optimization of mirror field for linear Fresnel reflector system. Optical and Precision Engineering, 23, 78-82(2015).

    [40] Ma Jun, Wang Ruidong, Wang Chonglong, et al. An optimal arrangement method f shading blocking analysis of linear Fresnel concentrat, CN: ZL201710653340.8 [P]. 20191105. (in Chinese)

    [41] Ma Jun. Optimization design perfmance research of linear Fresnel solar concentrating system[D]. Lanzhou Jiaotong University, 2020. (in Chinese)

    [42] R Winston. Principles of solar concentrators of a novel design. Sol Energy, 16, 89-95(1974).

    [43] J M Gordon, H Ries. Tailored edge-ray concentrators as ideal second stages for Fresnel reflectors. Appl Opt, 32, 2243-2251(1993).

    [44] S Balaji, K S Reddy, T Sundararajan. Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors. Appl Energy, 179, 1138-1151(2016).

    [45] G D Zhu. New adaptive method to optimize the secondary reflector of linear Fresnel collectors. Sol Energy, 144, 117-126(2017).

    [46] Prasad G S Chaitanya, K S Reddy, T Sundararajan. Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube. Sol Energy, 150, 1-12(2017).

    [47] R Grena, P Tarquini. Solar linear Fresnel collector using molten nitrates as heat transfer fluid. Energy, 36, 1048-1056(2011).

    [48] D Canavarro, J Chaves, M Collares-Pereira. Simultaneous multiple Surface method for Linear Fresnel concentrators with tubular receiver. Sol Energy, 110, 105-116(2014).

    [49] Canavarro D, Chaves J, CollaresPereira M. New dual asymmetric CEC linear Fresnel concentrat f evacuated tubular receivers[C]AIP Conference Proceedings, 2017, 1850: 040001.

    [50] P Tsekouras, C Tzivanidis, K Antonopoulos. Optical and thermal investigation of a linear Fresnel collector with trapezoidal cavity receiver. Appl Thermal Eng, 135, 379-388(2018).

    [51] Chenglong Wang, Jun Ma, Duowang Fan. Design and analysis of a CPC with single vacuum tube for linear Fresnel reflector system. Sci Sin Tech, 44, 597-602(2014).

    [52] Ma Jun, Xia Rongbin. Analysis on shading blocking of a linear Fresnel reflect based on ray tracing method[J]. Journal of Lanzhou Jiaotong University 2019, 38(4): 120124. (in Chinese)

    [53] M Hack, G Zhu, T Wendelin. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs. Appl Energy, 208, 1441-1451(2017).

    [54] Hberle A, Zahler C, Lerchenmüller H, et al. The solarmundo line focussing Fresnel collect: Optical thermal perfmance cost calculations [C]Proceedings of 11 th International Solar Power Chemical Energy Systems (SolarPACES) Symposium, 2002.

    [55] M Eck, R Uhlig, M Mertins, et al. Thermal load of direct steam-generating absorber tubes with large diameter in horizontal linear fresnel collectors. Heat Transfer Engineering, 28, 42-48(2007).

    [56] Jinlong Zhao, Lin Li, Zhengjun Cui, et al. Calculation of flux density distribution on focal plane in linear Fresnel reflector. Acta Optical Sinica, 1208001(2012).

    [57] Y Qiu, M J Li, K Wang, et al. Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm. Applied Energy, 205, 1394-1407(2017).

    [58] K J Craig, M A Moghimi, A E Rungasamy, et al. Finite-volume ray tracing using computational fluid dynamics in linear focus CSP applications. Applied Energy, 183, 241-256(2016).

    [59] M A Moghimi, K J Craig, J P Meyer. A novel computational approach to combine the optical and thermal modelling of linear Fresnel collectors using the finite volume method. Solar Energy, 116, 407-427(2015).

    [60] Jun Ma, Chenglong Wang, Yangjun Xia. Compound parabolic collector for linear Fresnel reflector system. Opt Precis Eng, 27, 2542-2548(2019).

    [61] Yaling He, Kun Wang, Baocun Du, et al. Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: A review. Chin Sci Bull, 61, 3208-3237(2016).

    [62] A Vouros, E Mathioulakis, E Papanicolaou, et al. On the optimal shape of secondary reflectors for linear Fresnel collectors. Renewable Energy, 143, 1454-1464(2019).

    [63] E Bellos, C Tzivanidis, A Papadopoulos. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering, 133, 70-80(2018).

    [64] Y L He, K Wang, Y Qiu, et al. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions. Applied Thermal Engineering, 149, 448-474(2019).

    [65] Sirimanna G, Nixon J D. Effects of Mirr Geometry on the Optical Efficiency of a Linear Fresnel Reflect (LFR) [M]Sayigh A. Renewable Energy Sustainable Buildings. Brighton: Innovative Renewable Energy, 2020: 337347.

    [66] A V Santos, D Canavarro, M Collares-Pereira. The gap angle as a design criterion to determine the position of linear Fresnel primary mirrors. Renewable Energy, 163, 1397-1407(2021).

    [67] J Ma, C L Wang, Y Zhou, et al. Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector. Renewable Energy, 171, 141-148(2021).

    [68] M J Montes, A Abanades, J M Martinez-Val, et al. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy, 83, 2165-2176(2009).

    [69] J H Peterseim, S White, A Tadros, et al. Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?. Renewable Energy, 57, 520-532(2013).

    [70] J F Feldhoff, D Benitez, M Eck, et al. Economic potential of solar thermal power plants with direct steam generation compared with HTF plants. Journal of Solar Energy Engineering, 132, 1001-1009(2010).

    [71] A Modi, D F Haglin. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation. Applied Thermal Engineering, 65, 201-208(2014).

    [72] C Bachelier, R Stieglitz. Design and optimisation of linear Fresnel power plants based on the direct molten salt concept. Solar Energy, 152, 171-192(2017).

    [73] E Bellos, C Tzivanidis, K A Antonopoulos. A detailed working fluid investigation for solar parabolic trough collectors. Applied Thermal Engineering, 114, 374-386(2017).

    [74] J Pacio, T Wetzel. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy, 93, 11-22(2013).

    [75] Y Qiu, M J Li, Y L He, et al. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Applied Thermal Engineering, 115, 1255-1265(2016).

    [76] F G Ramon. Preliminary design study for a lunar solar power station using local resources. Sol Energy, 86, 2871-2892(2012).

    [77] R Pérez-Lvarez, A Acosta-Iborra, D Santana. Thermal and mechanical stresses in bayonet tubes of solar central receivers working with molten salt and liquid sodium. Engineering, 5, 100073(2020).

    [78] Khelwal N, Sharma M, Singh O, et al. Comparative analysis of the linear Fresnel reflect assisted solar cycle on the basis of heat transfer fluids[J]. Materials Today: Proceedings, 2020, 38(1).

    [79] I F Okafor, J Dirker, J P Meyer. Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear Fresnel collector absorber tubes. Solar Energy, 107, 381-397(2014).

    [80] P Wang, D Y Liu, C Xu. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams. Applied Energy, 102, 449-60(2013).

    [81] Xiaowei Zhu, Yunhan Fu, Jingquan Zhao, et al. A novel wavy-tape insert configuration for pipe heat transfer augmentation. Energy Conversion & Management, 127, 140-148(2016).

    [82] E Bellos, C Tzivanidis, D Tsimpoukis. Thermal enhancement of parabolic trough collector with internally finned absorbers. Solar Energy, 157, 514-531(2017).

    [83] O A Jaramillo, M Borunda, K M Velazquez-Lucho, et al. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energy, 93, 125-141(2016).

    [84] Weiwei Yan, Shifu Ge, Yang Li. Numerical simulation on heat transfer enhancement in parabolic trough solar collector of DSG systems. Journal of Chinese Society of Power Engineering, 33, 550-554(2013).

    [85] Z Geng, J Gao, H Liu, et al. Heat transfer enhancement and field synergy analysis of vacuum collector tube with inserted rotor. AIP Advances, 10, 045224(2020).

    [86] Massidda L, Varone A. A numerical analysis of a high temperature solar collecting tube using gas as a heat transfer fluid[R]. Pula: Center f Advanced Studies, Research Development in Sardinia (CRS4), 2007.

    [87] G Delussu. A qualitative thermo-fluid-dynamic analysis of a CO2 solar pipe receiver. Solar Energy, 86, 926-934(2012).

    [88] Y L He, Y W Zhang. Advances and outlooks of heat transfer enhancement by longitudinal vortex generators. Adv Heat Transfer, 44, 119-185(2012).

    [89] Yang C , Zhang Y, Yan F, et al. The numerical simulation of enhanced heat transfer on a Linear Fresnel molten salttype receiver tube filled with pous media [C]E3 S Web of Conferences, 2019, 118(5): 01041.

    [90] J Subramani, P K Nagarajan, O Mahian, et al. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. Renewable Energy, 119, 19-31(2018).

    [91] E Bellos, C Tzivanidis, A Papadopoulos. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. Journal of Thermal Analysis and Calorimetry, 237-255(2018).

    [92] R Almanza, A Lentz, G Jimenez. Receiver behavior in direct steam generation with parabolic troughs. Solar Energy, 61, 275-278(1997).

    [93] M Ghodbane, E Bellos, Z Said, et al. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. Journal of Thermal Analysis and Calorimetry, 143, 4197-4215(2021).

    [94] Y Aldali, T Muneer, D Henderson. Solar absorber tube analysis: Thermal simulation using CFD. International Journal of Low-Carbon Technologies, 8, 14-19(2013).

    [95] Z Ebrahimpour, M Sheikholeslami, S A Farshad. Radiation and convection treatment of nanomaterial within a linear Fresnel reflector unit. European Physical Journal Plus, 136, 01141(2021).

    [96] D R Rajendran, E G Sundaram, P Jawahar, et al. Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design. Journal of Thermal Analysis and Calorimetry, 140, 33-51(2019).

    [97] José Montes María, Abbas Ruben, M Muñoz, et al. Advances in the linear Fresnel single-tube receivers: Hybrid loops with non-evacuated and evacuated receivers. Energy Conversion and Management, 149, 318-333(2017).

    [98] Burkholder F, Kutscher C. Heat loss testing of Schott''s 2008 PTR70 parabolic trough receiver [R]. Colado: National Renewable Energy Labaty, 2009.

    [99] J H Schön, G Binder, E Bucher. Performance and stability of some new high-temperature selective absorber systems based on metal/dielectric multilayers. Solar Energy Materials and Solar Cells, 33, 403-416(1994).

    [100] T S Sathiaraj, R Thangaraj, A Sharbaty, et al. Ni-Al2O3 selective cermet coatings for photothermal conversion up to 500. Thin Solid Films, 190, 241-254(1990).

    [101] C Eva, W Men, J A Sánchez-García, et al. Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications. Solar Energy Materials and Solar Cells, 122, 217-225(2014).

    [102] Y Shen, Y Y Shi, F C Wang. High-temperature optical properties and stability of AlxOy-AlNx-Al solar selective absorbing surface prepared by DC magnetron reactive sputtering. Solar Energy Materials and Solar Cells, 77, 393-403(2003).

    [103] Dawei Ding, Weimin Cai. Computer simulation of high-temperature solar selective absorption. Acta Energiae Solaris Sinica, 26, 1353-1358(2008).

    [104] M Lin, K Sumathy, Y J Dai, et al. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Applied Thermal Engineering, 51, 963-972(2013).

    [105] S Esposito, A Antonaia, M L Addonizio, et al. Fabrication and optimisa- tion of highly efficient cermet-based spectrally selective coatings for high operating temperature. Thin Solid Film, 517, 6000-6006(2009).

    [106] H Yang, Q Wang, X Huang, et al. Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers. Energy, 145, 206-216(2018).

    [107] Deyong Che, Hu Ding, Long Gao, et al. Modeling of CPC concentrating collector vacuum layer heat transfer. Renewable Energy Resources, 34, 1674-1679(2016).

    [108] L A López-Alvarez, M Larraneta, M A Silva-Pérez, et al. Impact of the variation of the receiver glass envelop transmittance as a function of the incidence angle in the performance of a linear Fresnel collector. Renewable Energy, 150, 607-615(2020).

    [109] Y Qiu, Y L He, M Wu, et al. A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver. Renewable Energy, 97, 129-144(2016).

    [110] K S Reddy, S Balaji, T Sundararajan, et al. Estimation of heat losses due to wind effects from linear parabolic secondary reflector -receiver of solar LFR module. Energy, 150, 410-433(2018).

    [111] E Guadamud, A Oliva, O Lehmkuhl, et al. Thermal analysis of a receiver for linear Fresnel reflectors. Energy Procedia, 69, 405-414(2015).

    [112] A Parikh, J Martinek, G Mungas, et al. Investigation of temperature distribution on a new linear Fresnel receiver assembly under high solar flux. International Journal of Energy Research, 43, 4051-4061(2019).

    [113] A Hofer, F Cuevas, A Heimsath, et al. Extended heat loss and temperature analysis of three linear Fresnel receiver designs. Energy Procedia, 69, 424-433(2015).

    [114] Lai Yanhua, Song Gu, Lu Mingxin, et al. Thermal perfmance analysis of linear fresnel reflect concentrat with a compound parabolic cavity absber [C]International Conference on Materials f Renewable Energy & Environment, 2011.

    [115] S Mohan, A Saxena, S Singh. Heat loss analysis from a trapezoidal cavity receiver in LFR system using conduction-radiation model. Solar Energy, 159, 37-43(2018).

    [116] Ardekani M M, Craig K J, Meyer J P. Optimization of insulation of a linear Fresnel collect [C]AIP Conference Proceedings, 2017, 1850(1): 040005.

    CLP Journals

    [1] Chenglong Wang, Bolong Yan, Mao Xu, Jun Ma. Optical performance of linear Fresnel condenser under different aiming strategies[J]. Infrared and Laser Engineering, 2023, 52(9): 20230259

    Ruidong Wang, Jun Ma, Chenglong Wang, Tianzhi Yu. Progress of linear Fresnel concentrator heat collection system[J]. Infrared and Laser Engineering, 2021, 50(11): 20210452
    Download Citation