• Laser & Optoelectronics Progress
  • Vol. 56, Issue 24, 241401 (2019)
Wangqi Fu, Bo Qian*, Zhiyuan Liu, and Bo Li
Author Affiliations
  • School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • show less
    DOI: 10.3788/LOP56.241401 Cite this Article Set citation alerts
    Wangqi Fu, Bo Qian, Zhiyuan Liu, Bo Li. Structure and Properties of 316L Stainless Steel Lattice Reinforced via Selective Laser Melting Using Vanadium Carbide Particles[J]. Laser & Optoelectronics Progress, 2019, 56(24): 241401 Copy Citation Text show less
    References

    [1] Liu J C[J]. Analysis of the state of the art and problems of metal additive manufacturing Electromachining & Mould, 2018, 1-7.

    [2] Liu Z Y, Qian B, Li P et al. Research on a new SLM process of pre-melting and re-melting[J]. Mechanical Science and Technology for Aerospace Engineering, 38, 566-570(2019).

    [3] Herzog D, Seyda V, Wycisk E et al. Additive manufacturing of metals[J]. Acta Materialia, 117, 371-392(2016).

    [4] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [5] Zhang T C, Zhang M, Qi J F et al[J]. Mechanical properties and structure analysis of SLM forming of 3%SiC/AlSi10Mg composite material New Technology & New Process, 2018, 1-3.

    [6] Zhao S M, Shen X F, Yang J L et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting[J]. Optics & Laser Technology, 103, 239-250(2018). http://adsabs.harvard.edu/abs/2018OptLT.103..239Z

    [7] AlMangour B, Kim Y K, Grzesiak D et al. . Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing[J]. Composites Part B: Engineering, 156, 51-63(2019).

    [8] Zhang M L, Wu Y, Lian Q et al. Microstructures and mechanical properties of in situ TiB2/Al-Si composite fabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 35, 3114-3121(2018).

    [9] Read N, Wang W, Essa K et al. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development[J]. Materials & Design (1980-2015), 65, 417-424(2015).

    [10] Qian Y H, Li M L, Liu Y Y et al. 9(16):[J]. properties of AlSi10Mg alloy formed by laser selective melting. China Chemical Trade, 100, 102(2017).

    [11] DebRoy T, Wei H L, Zuback J S et al. . Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018). http://www.sciencedirect.com/science/article/pii/S0079642517301172

    [12] Coltters R G. Thermodynamics of binary metallic carbides: a review[J]. Materials Science and Engineering, 76, 1-50(1985).

    [13] Shatynski S R. The thermochemistry of transition metal carbides[J]. Oxidation of Metals, 13, 105-118(1979). http://link.springer.com/article/10.1007/BF00611975

    [14] Sanaty-Zadeh A, Rohatgi P K. Corrigendum to: comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect [Mater. Sci. Eng. A 531 (2012) 112-118][J]. Materials Science and Engineering: A, 551, 302(2012). http://www.sciencedirect.com/science/article/pii/S0921509312005722

    [15] Qian D Y, Chen C J, Zhang M et al. Study on microstructure and micro-mechanical properties of porous aluminum alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 040300(2016).

    [16] AlMangour B, Baek M S, Grzesiak D et al. . Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting[J]. Materials Science and Engineering A, 712, 812-818(2018).

    Wangqi Fu, Bo Qian, Zhiyuan Liu, Bo Li. Structure and Properties of 316L Stainless Steel Lattice Reinforced via Selective Laser Melting Using Vanadium Carbide Particles[J]. Laser & Optoelectronics Progress, 2019, 56(24): 241401
    Download Citation