• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0603002 (2023)
Jiachen Li, Jun Wang*, Chunyang Xiao, Haijing Wang, Yanxing Jia, Zhuoliang Liu, Bojie Ma, Rui Ming, Qing Ge, Hao Zhai, Feng Lin, Weiyu He, Yongqing Huang, and Xiaomin Ren
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/CJL220798 Cite this Article Set citation alerts
    Jiachen Li, Jun Wang, Chunyang Xiao, Haijing Wang, Yanxing Jia, Zhuoliang Liu, Bojie Ma, Rui Ming, Qing Ge, Hao Zhai, Feng Lin, Weiyu He, Yongqing Huang, Xiaomin Ren. Investigation of Surface Improvement of GaAs/Si(001) with Strain Balanced Superlattice[J]. Chinese Journal of Lasers, 2023, 50(6): 0603002 Copy Citation Text show less
    References

    [1] Liang D, Bowers J E. Recent progress in lasers on silicon[J]. Nature Photonics, 4, 511-517(2010).

    [2] Kachris C, Tomkos I. Power consumption evaluation of all-optical data center networks[J]. Cluster Computing, 16, 611-623(2013).

    [3] Zhou Z P. Silicon photonics and its applications[J]. Optics & Optoelectronic Technology, 16, 6-10(2018).

    [4] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [5] Zhang Z, Ning Y Q, Zhang J W et al. Design and fabrication of 1160-nm optically-pumped vertical-external-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 47, 0701020(2020).

    [6] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [7] Helkey R, Saleh A A M, Buckwalter J et al. High-performance photonic integrated circuits on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 8300215(2019).

    [8] Ren X M, Wang Q. Novel comprehensive theoretical description of epitaxial crystal-growth modes and the prediction of “post S-K compatible-heterogeneous-growth mode”[J]. Journal of Beijing University of Posts and Telecommunications, 37, 1-5(2014).

    [9] Li K S, Yang J J, Lu Y et al. Inversion boundary annihilation in GaAs monolithically grown on on-axis silicon (001)[J]. Advanced Optical Materials, 8, 2000970(2020).

    [10] Li K S, Liu Z Z, Tang M C et al. O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate[J]. Journal of Crystal Growth, 511, 56-60(2019).

    [11] Zhu S, Shi B, Li Q et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon[J]. Applied Physics Letters, 113, 221103(2018).

    [12] Kunert B, Mols Y, Baryshniskova M et al. How to control defect formation in monolithic Ⅲ/Ⅴ hetero-epitaxy on (100) Si? A critical review on current approaches[J]. Semiconductor Science and Technology, 33, 093002(2018).

    [13] Tsuji T, Yonezu H, Ohshima N. Reduction of surface roughness of an AlAs/GaAs distributed Bragg reflector grown on Si with strained short-period superlattices[J]. Journal of Crystal Growth, 201/202, 1010-1014(1999).

    [14] Shi B, Zhu S, Li Q et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si[J]. Applied Physics Letters, 110, 121109(2017).

    [15] Wei W Q, Wang J H, Zhang B et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm[J]. Applied Physics Letters, 113, 053107(2018).

    [16] Wei W Q, Feng Q, Guo J J et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration[J]. Optics Express, 28, 26555-26563(2020).

    [17] Wei W Q, Wang J H, Zhang J Y et al. A CMOS compatible Si template with (111) facets for direct epitaxial growth of Ⅲ-Ⅴ materials[J]. Chinese Physics Letters, 37, 024203(2020).

    [18] Kwoen J, Jang B, Lee J et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)[J]. Optics Express, 26, 11568-11576(2018).

    [19] Wan Y T, Shang C, Norman J et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1900409(2020).

    [20] Yang J J, Liu Z Z, Jurczak P et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates[J]. Journal of Physics D: Applied Physics, 54, 035103(2021).

    [21] Shang C, Selvidge J, Hughes E et al. A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density[J]. Physica Status Solidi (a), 218, 2000402(2021).

    [22] Jung D, Callahan P G, Shin B et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001)[J]. Journal of Applied Physics, 122, 225703(2017).

    [23] Samonji K, Yonezu H, Takagi Y et al. Evolution process of cross-hatch patterns and reduction of surface roughness in (InAs)m(GaAs)n strained short-period superlattices and InGaAs alloy layers grown on GaAs[J]. Journal of Applied Physics, 86, 1331-1339(1999).

    [24] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: Ⅰ. misfit dislocations[J]. Journal of Crystal Growth, 27, 118-125(1974).

    [25] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: Ⅱ. dislocation pile-ups, threading dislocations, slip lines and cracks[J]. Journal of Crystal Growth, 29, 273-280(1975).

    [26] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: Ⅲ. preparation of almost perfect multilayers[J]. Journal of Crystal Growth, 32, 265-273(1976).

    [27] Dunstan D J. Strain and strain relaxation in semiconductors[J]. Journal of Materials Science: Materials in Electronics, 8, 337-375(1997).

    [28] Wang J, Liu Z L, Liu H et al. High slope-efficiency quantum-dot lasers grown on planar exact silicon (001) with asymmetric waveguide structures[J]. Optics Express, 30, 11563-11571(2022).

    [29] Chen W R, Wang J, Zhu L N et al. Theoretical and experimental study on epitaxial growth of antiphase boundary free GaAs on hydrogenated on-axis Si(001) surfaces[J]. Journal of Physics D: Applied Physics, 54, 445102(2021).

    [30] Wan Y, Shang C, Norman J et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-9(2020).

    [31] Dubrovskii V G[M]. Nucleation theory and growth of nanostructures(2014).

    [32] Lu D C, Duan S K[M]. Fundamentals and applications of metal organic compounds vapor phase epitaxy, 125-126(2009).

    [33] Scheel H J. Historical aspects of crystal growth technology[J]. Journal of Crystal Growth, 211, 1-12(2000).

    [34] Hong W, Lee H N, Yoon M et al. Persistent step-flow growth of strained films on vicinal substrates[J]. Physical Review Letters, 95, 095501(2005).

    [35] Markov I V[M]. Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy(2016).

    [36] Dong H L, Sun J, Ma S F et al. Interfacial relaxation analysis of InGaAs/GaAsP strain-compensated multiple quantum wells and its optical property[J]. Superlattices and Microstructures, 114, 331-339(2018).

    [37] George I, Becagli F, Liu H Y et al. Dislocation filters in GaAs on Si[J]. Semiconductor Science and Technology, 30, 114004(2015).

    [38] Ratsch C, Garcia J, Caflisch R E. Influence of edge diffusion on the growth mode on vicinal surfaces[J]. Applied Physics Letters, 87, 141901(2005).

    Jiachen Li, Jun Wang, Chunyang Xiao, Haijing Wang, Yanxing Jia, Zhuoliang Liu, Bojie Ma, Rui Ming, Qing Ge, Hao Zhai, Feng Lin, Weiyu He, Yongqing Huang, Xiaomin Ren. Investigation of Surface Improvement of GaAs/Si(001) with Strain Balanced Superlattice[J]. Chinese Journal of Lasers, 2023, 50(6): 0603002
    Download Citation