• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 4, 2130003 (2021)
Timofey Pylaev1、2、3、*, Elena Avdeeva1, and Nikolai Khlebtsov1、4
Author Affiliations
  • 1Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Saratov 410049, Russia
  • 2Razumovsky Saratov State Medical University, Saratov 410012, Russia
  • 3Federal Center of Agriculture Research of the South-East Region, Saratov 410010, Russia
  • 4Saratov National Research State University Saratov 410012, Russia
  • show less
    DOI: 10.1142/s1793545821300032 Cite this Article
    Timofey Pylaev, Elena Avdeeva, Nikolai Khlebtsov. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2130003 Copy Citation Text show less
    References

    [1] X. Bai, Y. Wang, Z. Song, Y. Feng, Y. Chen, D. Zhang, L. Feng, "The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment," Int. J. Mol. Sci. 21, 2480 (2020).

    [2] G. Go, C.-S. Lee, Y. M. Yoon, J. H. Lim, T. H. Kim, S. H. Lee, "PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells," Int. J. Mol. Sci. 22(4), 1976 (2021).

    [3] K. Saravanakumar, A. Sathiyaseelan, A. V. A. Mariadoss, X. Hu, K. Venkatachalam, M.-H. Wang, "Nucleolin targeted delivery of aptamer tagged Trichoderma derived crude protein coated gold nanoparticles for improved cytotoxicity in cancer cells," Proc. Biochem. 102, 325–332 (2021).

    [4] D. Ferreira, D. Fontinha, C. Martins, D. Pires, A. R. Fernandes, P. V. Baptista, "Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics," Molecules 25, 3489 (2020).

    [5] M. Kheiro llahpour, M. Mehrabi, N. M. Dounighi, M. Mohammadi, A. Masoudi, "Nanoparticles and vaccine development. Pharmaceutical nanotechnology," Pharma. Nanotechnol. 8(1), 6–21 (2020).

    [6] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, "Gold nanoparticles in chemical and biological sensing," Chem. Rev. 112(5), 2739–2779 (2012).

    [7] E. Ferrari, M. Soloviev, Nanoparticles in Biology and Medicine Methods and Protocols, Springer Science+Business Media Series, New York (2020).

    [8] Q. Guo, F. Hu, X. Yang, J. Yang, S. Yang, X. Chen, F. Wu, S. D. Minteer "In-situ and controllable synthesis of graphene-gold nanoparticles/ molecularly imprinted polymers composite modi- fied electrode for sensitive and selective rutin detection," Microchem. J. 158, 105254 (2020).

    [9] T. Yang, Z. Luo, Y. Tian, C. Qian, Y. Duan, "Design strategies of AuNPs-based Nucleic Acid colorimetric biosensors," Trends Anal. Chem. 124, 115795 (2020).

    [10] J. Simon, S. Udayan, E. S. Bindiy, S. G. Bhat, V. P. N. Nampoori, M. Kailasnath, "Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins," Anal. Biochem. 612, 113975 (2021).

    [11] A. Ahmad, H. Liang, S. Ali, Q. Abbas, A. Farid, A. Ali, M. Iqbal, I. A. Khan, L. Pan, A. Abbas, Z. Farooq, "Cheap, reliable, reusable, thermally and chemically stable fluorinated hexagonal boron nitride nanosheets coated Au nanoparticles substrate for surface enhanced Raman spectroscopy," Sens. Actuators B Chem. 304, 127394 (2020).

    [12] M. S. Kang, S. Y. Lee, K. S. Kim, D.-W. Han, "State of the art biocompatible gold nanoparticles for cancer theragnosis," Pharmaceutics 12(8), 701 (2020).

    [13] L. Zhang, Y. Mazouzi, M. Salmain, B. Liedberg, S. Boujday, "Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications," Biosens. Bioelectron. 165, 112370 (2020).

    [14] X. Tao, X. Wang, B. Liu, J. Liu, "Conjugation of antibodies and aptamers on nanozymes for developing biosensors," Biosens. Bioelectron. 168, 112537 (2020).

    [15] M.-T. Chiang, H.-L. Wang, T.-Y. Han, Y.-K. Hsieh, J. Wang, D.-H. Tsai, "Assembly and detachment of hyaluronic acid on a protein-conjugated gold nanoparticle," Langmuir 36(48), 14782–14792 (2020).

    [16] B. Tan, F. Baycan, "A new donor-acceptor conjugated polymer-gold nanoparticles biocomposite materials for enzymatic determination of glucose," Polymer 210, 123066 (2020).

    [17] Y. Gao, Y. Liu, R. Yan, J. Zhou, H. Dong, X. Hua, P. Wang, "Bifunctional peptide-conjugated gold nanoparticles for precise and efficient nucleus-targeting bioimaging in live cells," Anal. Chem. 92 (19), 13595–13603 (2020).

    [18] Z. Wang, J. Dong, Q. Zhao, Y. Ying, L. Zhang, J. Zou, S. Zhao, J. Wang, Y. Zhao, S. Jiang, "Gold nanoparticle mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review)," Mol. Med. Rep. 22(6), 4475–4484 (2020).

    [19] E. Aali, A. S. Rad, M. Esfahanian, "Computational investigation of the strategy of DNA/RNA stabilization through the study of the conjugation of an oligonucleotide with silver and gold nanoparticles," Appl. Organomet. Chem. 34(8), e5690 (2020).

    [20] Y. Hao, Y. Li, L. Song, Z. Deng, "Flash synthesis of spherical nucleic acids with record DNA density," Am. Chem. Soc. 143(8), 3065–3069 (2021).

    [21] O. Mukama, J. Wu, Z. Li, Q. Liang, Z. Yi, X. Lu, Y. Liu, Y. Liu, M. Hussain, G. G. Makafe, J. Liu, N. Xu, L. Zeng, "An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids," Biosens. Bioelectron. 159, 112143 (2020).

    [22] C. Mirkin, R. Letsinger, R. Mucic, R. C. Mucic, J. J. Storho?, "A DNA-based method for rationally assembling nanoparticles into macroscopic materials," Nature 382, 607–609 (1996).

    [23] L. Fang, D. Liu, Y. Wang, Y. Li, L. Song, M. Gong, Y. Li, Z. Deng, "Nanosecond-laser-based charge transfer plasmon engineering of solution-assembled nanodimers," Nano Lett. 18, 7014–7020 (2018).

    [24] N. Liu, T. Liedl, "DNA-assembled advanced plasmonic architectures," Chem. Rev. 118, 3032–3053 (2018).

    [25] W. Zhou, Q. Li, H. Liu, J. Yang, D. Liu, "Building electromagnetic hot spots in living cells via targettriggered nanoparticle dimerization," ACS Nano 11, 3532–3541 (2017).

    [26] J. Liu, Y. A. Lu, "Colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles," J. Am. Chem. Soc. 125, 6642–6643 (2003).

    [27] S. M. Taghdisi, N. M. Danesh, M. Ramezani, A. S. Emrani, K. Abnous, "Novel colorimetric aptasensor for zearalenone detection based on nontarget- induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification," ACS Appl. Mater. Interfaces 10, 12504–12509 (2018).

    [28] Z. Long, M. Liu, L. Mao, G. Zeng, Q. Huang, H. Huang, F. Deng, Y. Wan, X. Zhang, Y. Wei, "Onestep synthesis, self-assembly and bioimaging applications of adenosine triphosphate containing amphiphilies with aggregation-induced emission feature," Mater. Sci. Eng. C Mater. Biol. Appl. 73, 252–256 (2017).

    [29] W. Nie, Q. Wang, L. Zou, Y. Zheng, X. Liu, X. Yang, K. Wang, "Low-fouling surface plasmon resonance sensor for highly sensitive detection of microRNA in a complex matrix based on the DNA tetrahedron," Anal. Chem. 90, 12584–12591 (2018).

    [30] X. Zhou, C. T. Yang, Q. Xu, Z. Lou, Z. Xu, B. Thierry, N. Gu, "Gold nanoparticle probe-assisted antigen-counting chip using SEM," ACS Appl. Mater. Interfaces 11, 6769–6776 (2019).

    [31] L. Feng, L. Wu, F. Xing, L. Hu, J. Ren, X. Qu, "Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols," Biosens. Bioelectron. 98, 378–385 (2017).

    [32] J. Wang, J. Huang, K. Quan, J. Li, Y. Wu, Q. Wei, X. Yang, K. Wang, "Hairpin-fuelled catalytic nanobeacons for amplified microRNA imaging in live cells," Chem. Commun. 54, 10336–10339 (2018).

    [33] C. Zhang, J. P. Kim, M. Creer, J. Yang, Z. Liu, "A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis," Biosens. Bioelectron. 97, 164–168 (2017).

    [34] M. E. Kyriazi, D. Giust, A. H. El-Sagheer, P. M. Lackie, O. L. Muskens, T. Brown, A. G. Kanaras, "Multiplexed mRNA Sensing and combinatorialtargeted drug delivery using DNA-gold nanoparticle dimers," ACS Nano 12, 3333–3340 (2018).

    [35] P. Vilela, A. Heuer-Jungemann, A. El-Sagheer, T. Brown, O. L. Muskens, N. Smyth, A. G. Kanaras, "Sensing of vimentin mRNA in 2D and 3D models of wounded skin using DNA coated gold nanoparticles," Small 14, e1703489 (2018).

    [36] C. H. Choi, L. Hao, S. P. Narayan, E. Auyeung, C. A. Mirkin, "Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates," Proc. Natl. Acad. Sci. U. S. A. 110, 7625–7630 (2013).

    [37] D. A. Giljohann, D. S. Seferos, P. C. Patel, J. E. Millstone, N. L. Rosi, C. A. Mirkin, "oligonucleotide loading determines cellular uptake of DNA-Modified gold nanoparticles," Nano Lett. 7, 3818–3821 (2007).

    [38] Y. Yang, S. Zhong, K. Wang, J. Huang, "Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems," Analyst 144, 1052–1072 (2019).

    [39] U. Heinemann, Y. Roske, "Symmetry in nucleicacid double helices," Symmetry 12(5), 737 (2020).

    [40] H. Sato, S. Das, R. H. Singer, M. Vera, "Imaging of DNA and RNA in living eukaryotic cells to reveal spatiotemporal dynamics of gene expression," Annu. Rev. Biochem. 89, 159–187 (2020).

    [41] J. K. Kulski, Next-generation sequencing — An overview of the history, tools, and "omic" application, Next Generation Sequencing - Advances, Applications and Challenges, Chap. 1, J. K. Kulski, Ed., pp. 3–60, InTech (2016).

    [42] R. A. Hughes, A. D. Ellington, "Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology," Cold Spring Harb. Perspect. Biol. 9(1), a023812 (2017).

    [43] O. I. Wilner, I. Willner, "Functionalized DNA nanostructures," Chem. Rev. 112(4), 2528–2556 (2012).

    [44] C. Kimna, O. Lieleg, "Molecular micromanagement: DNA nanotechnology establishes spatiotemporal control for precision medicine," Biophys. Rev. 1, 011305 (2020).

    [45] F. Xu, Q. Xia, P. Wang, "Rationally designed DNA nanostructures for drug delivery," Front. Chem. 8, 751 (2020).

    [46] X. Yan, S. Huang, Y. Wang, Y. Tang, Y. Tian, "Bottom-up self-assembly based on DNA nanotechnology," Nanomaterials 10(10), 2047 (2020).

    [47] M. Hawner, C. Ducho, "Cellular targeting of oligonucleotides by conjugation with small molecules," Molecules 25(24), 5963 (2020).

    [48] J. Bruno, "A review of therapeutic aptamer conjugates with emphasis on new approaches," Pharmaceuticals 6(3), 340–357 (2013).

    [49] N. Rabiee, S. Ahmadi, Z. Arab, M. Bagherzadeh, M. Safarkhani, B. Nasseri, M. Rabiee, M. Tahriri, T. J. Webster, L. Tayebi, "Aptamer hybrid nanocomplexes as targeting components for antibiotic/ gene delivery systems and diagnostics: A review," Int. J. Nanomed. 15, 4237–4256 (2020).

    [50] H. Ling, F. Xiaoyi, K. G. Y. Yao, M. Hongmin, K. Guoliang, Z. Xiaobing, "DNAzyme-gold nanoparticle- based probes for biosensing and bioimaging," J. Mater. Chem. B 8, 9449–9465 (2020).

    [51] S. Siddiquee, K. Rovina, A. Azriah, "A review of peptide nucleic acid," Adv. Tech. Biol. Med. 3(2), 131 (2015).

    [52] S. Ochoa, V. T. Milam, "Modified nucleic acids: expanding the capabilities of functional oligonucleotides," Molecules 25, 4659 (2020).

    [53] X. Li, K. Feng, L. Li, L. Yang, X. Pan, H. S. Yazd, C. Cui, J. Li, L. Moroz, Y. Sun, B. Wang, X. Li, T. Huang, W. Tan, "Lipid–oligonucleotide conjugates for bioapplications," Natl. Sci. Rev. 7, 1933–1953 (2020).

    [54] N. Dias, C. A. Stein, "Antisense oligonucleotides: Basic concepts and mechanisms," Mol. Cancer Ther. 1, 347–355 (2002).

    [55] A. Kilanowska, S. Studzińska, "In vivo and in vitro studies of antisense oligonucleotides – A review," RSC Adv. 10, 34501–34516 (2020).

    [56] S. Volpi, U. Cancelli, M. Neri, R. Corradini, "Multifunctional delivery systems for peptide nucleic acids," Pharmaceuticals. 14(1), 14 (2021).

    [57] Y. Zhao, C. Xu, "DNA based plasmonic heterogeneous nanostructures: Building, optical responses, and bioapplications," Adv. Mat. 32(41), 1907880 (2020).

    [58] L. A. Dykman, N. G. Khlebtsov, "Methods for chemical synthesis of colloidal gold," Russ. Chem. Rev. 88(3), 229–247 (2019).

    [59] X.-Y. Liu, C.-B. Zhou, C. Fang, "Nanomaterialinvolved neural stem cell research: Disease treatment, cell labeling, and growth regulation," Biomed. Pharmacother. 107, 583–597 (2018).

    [60] Q. Jiang, S. Zhao, J. Liu, L. Song, Z.-G. Wang, B. Ding, "Rationally designed DNA-based nanocarriers," Adv. Drug Deliv. Rev. 147, 2–21 (2019).

    [61] V. Raji, K. Pal, T. Zaheer, N. Kalarikkal, S. Thomas, F. G. de Souza, A. Si, "Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review," Ther. Deliv. 11(8), 521–534 (2020).

    [62] N. H. Abd Ellah, S. F. Gad, K. Muhammad, G. E. Batiha, H. F. Hetta, "Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19," Nanomedicine 15, 21 (2020).

    [63] L. Yang, H. Sun, X. Wang, W. Yao, W. Zhang, L. Jiang, "An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles," Microchim. Acta 186, 308 (2019).

    [64] Z. Hou, Z. Wang, R. Liu, H. Li, Z. Zhang, T. Su, J. Yang, H. Liu, "The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery," J. Nanobiotechnol. 17, 88 (2019).

    [65] A. Gupta, D. F. Moyano, A. Parnsubsakul, A. Papadopoulos, L.-S. Wang, R. F. Landis, R. Das, V. M. Rotello, "Ultrastable and biofunctionalizable gold nanoparticles," ACS Appl. Mater. Interfaces 8 (22), 14096–14101 (2016).

    [66] X.-Y. Li, F.-Y. Feng, Z.-T. Wu, Y.-Z. Liu, X.-D. Zhou, J.-M. Hu, "High stability of gold nanoparticles towards DNA modification and efficient hybridization via a surfactant-free peptide route," Chem. Commun. 53, 11909–11912 (2017).

    [67] S. S. Hinman, K. S. M. Keating, Q. Cheng, "DNA linkers and diluents for ultrastable gold nanoparticle bioconjugates in multiplexed assay development," Anal. Chem. 89, 4272–4279 (2017).

    [68] J. Deka, R. Měch, L. Ianeselli, H. Amenitsch, F. Cacho-Nerin, P. Parisse, L. Casalis, "Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density," ACS Appl. Mater. Interfaces 7(12), 7033–7040 (2015).

    [69] J. H. Heo, K.-I. Kim, H. H. Cho, J. W. Lee, B. S. Lee, S. Y. Yoon, K. J. Park, S. Lee, J. Kim, D. Whang, J. H. Lee, "Ultrastable-stealth large gold nanoparticles with DNA directed biological functionality," Langmuir 31(51), 13773–13782 (2015).

    [70] J. Li, B. Zhu, Y. Xiujie, Y. Zhang, Z. Zhu, S. Tu, S. Jia, R. Liu, H. Kang, C. J. Yang, "A synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides," ACS Appl. Mater. Interfaces 6, 16800–16807 (2014).

    [71] J. H. Heo, H. H. Cho, J. H. Lee, "Surfactant-free nanoparticle–DNA complexes with ultrahigh stability against salt for environmental and biological sensing," Analyst 139, 5936–5944 (2014).

    [72] J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, "Colloidal Stability of gold nanoparticles modified with thiol compounds: Bioconjugation and application in cancer cell imaging," Langmuir 28(9), 4464–4471 (2012).

    [73] S. J. Hurst, A. K. R. Lytton-Jean, C. A. Mirkin, "Maximizing DNA loading on a range of gold nanoparticle sizes," Anal. Chem. 78(24), 8313– 8318 (2006).

    [74] X. Liu, G. Liao, L. Zou, Y. Zheng, X. Yang, Q. Wang, X. Geng, S. Li, Y. Liu, K. Wang, "Construction of bio/nanointerfaces: Stable gold nanoparticle bioconjugates in complex systems," ACS Appl. Mater. Interfaces 11(43), 40817–40825 (2019).

    [75] J. H. Joo, J.-S. Lee, "Library approach for reliable synthesis and properties of DNA-gold nanorod conjugates," Anal. Chem. 85, 6580–6586 (2013).

    [76] A. Wijaya, K. Hamad-Schi?erli, "Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange," Langmuir 24, 9966–9969 (2008).

    [77] C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.- C. Wu, "DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation," J. Am. Chem. Soc. 128, 3709– 3715 (2006).

    [78] S. Pal, Z. Deng, H. Wang, S. Zou, Y. Liu, H. Yan, "DNA directed self-assembly of anisotropic plasmonic nanostructures," J. Am. Chem. Soc. 133, 17606–17609 (2011).

    [79] D. Shi, C. Song, Q. Jiang, Z.-G. Wang, B. Ding, "A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value," Chem. Commun. 49, 2533–2535 (2013).

    [80] U. Das, A. Sahoo, S. Haldar, S. Bhattacharya, S. S. Mandal, W. H. Gmeiner, S. Ghosh, "Secondary structure-dependent physicochemical interaction of oligonucleotides with gold nanorod and photothermal effect for future applications: a new insight," ACS Omega 3(10), 14349–14360 (2018).

    [81] I. C. Pekcevik, L. C. H. Poon, M. C. P. Wang, B. D. Gates, "Tunable loading of single-stranded DNA on gold nanorods through the displacement of polyvinylpyrrolidone," Anal. Chem. 85, 9960– 9967 (2013).

    [82] J. D. Carter, T. H. LaBean, "Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition," ACS Nano 5, 2200–2205 (2011).

    [83] A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. G. Schultz, "Organization of `nanocrystal molecules' using DNA," Nature 382, 609–611 (1996).

    [84] E. Auyeung, T. I. N. G. Li, A. J. Senesi, A. L. Schmucker, B. C. Pals, M. O. de la Cruz, C. A. Mirkin, "DNA-mediated nanoparticle crystallization into Wulff polyhedral," Nature 505, 73–77 (2014).

    [85] F. Lu, K. G. Yager, Y. Zhang, H. Xin, O. Gang, "Superlattices assembled through shape-induced directional binding," Nat. Commun. 6, 6912 (2015).

    [86] J. E. Millstone, D. G. Georganopoulou, X. Xu, W. Wei, S. Li, C. A. Mirkin, "DNA-gold triangular nanoprism conjugates," Small 4(12), 2176–2180 (2008).

    [87] J.-Y. Kim, J.-S. Lee, "Synthesis and thermodynamically controlled anisotropic assembly of DNA-Silver Nanoprism conjugates for diagnostic applications," Chem. Mater. 22(24), 6684–6691 (2010).

    [88] H.-G. Park, J. H. Joo, H.-G. Kim, J.-S. Lee, "Shape-dependent reversible assembly properties of polyvalent DNA-silver nanocube conjugates," J. Phys. Chem. 116(3), 2278–2284 (2011).

    [89] M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, C. A. Mirkin, "DNAnanoparticle superlattices formed from anisotropic building blocks," Nat. Mater. 9, 913–917 (2010).

    [90] E. Dujardin, L.-B. Hsin, C. R. C. Wangb, S. Mann, "DNA-driven self-assembly of gold nanorods," Chem. Commun. 14, 1264–1265 (2001).

    [91] E. Yasun, B. Gulbakan, I. Ocsoy, Q. Yuan, M. I. Shukoor, C. Li, W. Tan, "Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods," Anal. Chem. 84(14), 6008–6015 (2012).

    [92] C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.- C. Wu, "DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation," J. Am. Chem. Soc. 128(11), 3709–3715 (2006).

    [93] S. Pal, Z. Deng, H. Wang, S. Zou, Y. Liu, H. Yan, "DNA directed self-assembly of anisotropic plasmonic nanostructures," J. Am. Chem. Soc. 133(44), 17606–17609 (2011).

    [94] D. Shi, C. Song, Q. Jiang, Z.-G. Wanga, B. Ding, "A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value," Chem. Commun. 49, 2533–2535 (2013).

    [95] S. Mann, "Life as a nanoscale phenomenon," Angew. Chem. Int. Ed. 47(29), 5306–5320 (2008).

    [96] H. Lin, S. Lee, L. Sun, M. Spellings, M. Engel, S. C. Glotzer, "Clathrate colloidal crystals," Science 355(6328), 931–935 (2017).

    [97] M. Loretan, I. Domljanovic, M. Lakatos, C. Rüegg, G. P. Acuna, "DNA origami as emerging technology for the engineering of fluorescent and plasmonic- based biosensors," Materials 13(9), 2185 (2020).

    [98] F. F. Lu, T. Vo, Y. Zhang, A. Frenkel, K. G. Yager, S. Kumar, O. Gang, "Unusual packing of soft-shelled nanocubes," Sci. Adv. 5(5), 2399 (2019).

    [99] S. Li, L. Xu, W. Ma, X. Wu, M. Sun, H. Kuang, L. Wang, N. A. Kotov, C. Xu, "Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles," J. Am. Chem. Soc. 138, 306 (2016).

    [100] L. Xu, H. Kuang, C. Xu, W. Ma, L. Wang, N. A. Kotov, "Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells," J. Am. Chem. Soc. 134, 1699 (2012).

    [101] Y. Wang, B. Yan, L. Chen, "SERS Tags: Novel optical nanoprobes for bioanalysis," Chem. Rev. 113(3), 1391–1428 (2013).

    [102] J. R. Lakowicz, Introduction to fluorescence, Principles of Fluorescence Spectroscopy, Chap. 1, J. R. Lakowicz, Ed., pp. 1–26, Springer, US, New York (2006).

    [103] J.-M. Nam, J.-W. Oh, H. Lee, Y. D. Suh, "Plasmonic nanogap-enhanced Raman scattering with nanoparticles," Acc. Chem. Res. 49(12), 2746–2755 (2016).

    [104] N. G. Khlebtsov, L. Lin, B. N. Khlebtsov, J. Ye, "Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications," Theranostics 10(5), 2067–2094 (2020).

    [105] D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Shu, J.-M. Nam, "Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap," Nat Nano 6, 452–460 (2011).

    [106] W. Kang, P. T. C. So, R. R. Dasari, D.-K. Lim, "High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap," Nano Lett. 15, 1766–1772 (2015).

    [107] J.-W. Oh, D.-K. Lim, G.-H. Kim, Y. D. Suh, J. Nam, "Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap," J. Am. Chem. Soc. 136, 14052–14059 (2014).

    [108] Y. Zhang, P. Yang, M. A. H. Muhammed, S. K. Alsaiari, B. Moosa, A. Almalik, A. Kumar, E. Ringe, N. M. Khashab, "Tunable and linker free nanogaps in core–shell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS," ACS Appl. Mater. Interfaces 9(43), 37597–37605 (2017).

    [109] E. Yang, D. Li, P. Yin, Q. Xie, Y. Li, Q. Lin, Y. Duan, "A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker," Biosens. Bioelectron. 172, 112758 (2021).

    [110] J.-H. Lee, M. H. You, G.-H. Kim, J.-M. Nam, "Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface- enhanced Raman scattering probes," Nano Lett. 14(11), 6217–6225 (2014).

    [111] J.-W. Chen, X.-P. Liu, K.-J. Feng, Y. Liang, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, "Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer," Biosens. Bioelectron. 24(1), 66–71 (2008).

    [112] J. Prinz, B. Schreiber, L. Olejko, J. Oertel, J. Rackwitz, A. Keller, I. Bald, "DNA origami substrates for highly sensitive surface-enhanced Raman scattering," J. Phys. Chem. Lett. 4(23), 4140–4145 (2013).

    [113] L. Z. Chen, J. Chao, X. M. Qu, H. B. Zhang, D. Zhu, S. Su, A. Aldalbahi, L. H. Wang, H. Pei, "Probing cellular molecules with polyA-based engineered aptamer nanobeacon," ACS Appl. Mater. Interfaces 9, 8014–8020 (2017).

    [114] D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, C. A. Mirkin, "Nano-flares: probes for transfection and mRNA detection in living cells," J. Am. Chem. Soc. 129(50), 15477–15479 (2007).

    [115] P. W. Wu, K. V. Hwang, T. Lan, Y. Lu, "A DNAzyme-Gold nanoparticle probe for uranyl ion in living cells," J. Am. Chem. Soc. 135, 5254–5257 (2013).

    [116] H.-Y. Yeh, M. V. Yates, A. Mulchandani, W. Chen, "Molecular beacon–quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells," Chem. Commun. 46, 3914–3916 (2010).

    [117] W. Liu, H. Wei, Z. Lin, S. Mao, J.-M. Lin, "Rare cell chemiluminescence detection based on aptamer- specific capture in microfluidic channels," Biosens. Bioelectron. 28(1), 438–442 (2011).

    [118] C. Hu, J. Shen, J. Yan, J. Zhong, W. Qin, R. Liu, A. Aldalbahi, X. Zuo, S. Song, C. Fanc, D. He, "Highly narrow nanogap-containing Au@Au coreshell SERS nanoparticles: Size-dependent Raman enhancement and applications in cancer cell imaging," Nanocale 8, 2090–2096 (2016).

    [119] J. W. Kang, P. T. C. So, R. R. Dasari, D.-K. Lim, "High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap," Nano Lett. 15(3), 1766–1772 (2015).

    [120] S. Pal1, A. Ray, C. Andreou, Y. Zhou, T. Rakshit, M. Wlodarczyk, M. Maeda, R. Toledo-Crow, N. Berisha, J. Yang, H.-T. Hsu, A. Oseledchyk, J. Mondal, S. Zou, M. F. Kircher, "DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy," Nat. Commun. 10, 1926 (2019).

    [121] A. Aderem, D. M. Underhill, "Mechanisms of phagocytosis in macrophages," Annu. Rev. Immunol. 17, 593–623 (1999).

    [122] S. L. Schmid, "Clathrin-coated vesicle formation and protein sorting: An integrated process," Annu. Rev. Biochem. 66, 511–548 (1997).

    [123] S. D. Conner, S. L. Schmid, "Regulated portals of entry into the cell," Nature 422, 37–44 (2003).

    [124] J. A. Swanson, C. Watts, "Macropinocytosis," Trends Cell Biol. 5, 424–428 (1995).

    [125] J. Yao, Y. Fan, Y. Li, L. Huang, "Strategies on the nuclear-targeted delivery of genes," J. Drug Target. 21, 926–939 (2013).

    [126] A. B. Hill, M. Chen, C.-K. Chen, B. A. Pfeifer, C. H. Jones, "Overcoming gene-delivery hurdles: Physiological considerations for nonviral vectors," Trends Biotechnol. 34, 91–105 (2016).

    [127] W.-F. Lai, W.-T. Wong, "Design of polymeric gene carriers for effective intracellular delivery," Trends Biotechnol. 36, 713–728 (2018).

    [128] M. P. Stewart, R. Langer, K. F. Jensen, "Intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts," Chem. Rev. 118(16), 7409–7531 (2018).

    [129] C. Roma-Rodrigues, L. Rivas-García, P. V. Baptista, A. R. Fernandes, "Gene therapy in cancer treatment: Why go nano?" Pharmaceutic. 12(3), 233 (2020).

    [130] R. Huschka, A. Barhoumi, Q. Liu, J. A. Roth, L. Ji, N. J. Halas, "Gene silencing by gold nanoshellmediated delivery and laser-triggered release of antisense oligonucleotide and siRNA," ACS Nano 6, 7681–7691 (2012).

    [131] L. A. Dykman, N. G. Khlebtsov, "Multifunctional gold-based nanocomposites for theranostics," Biomaterials 108, 13–34 (2016).

    [132] S. Wang, Y. Chen, S. Wang, P. Li, C. A. Mirkin, O. K. Farha, "DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins," J. Am. Chem. Soc. 141(6), 2215–2219 (2019).

    [133] I. Lostale-Seijo, J. Montenegro, "Synthetic materials at the forefront of gene delivery," Nat. Chem. 2, 258–277 (2018).

    [134] R. Levy, U. Shaheen, Y. Cesbron, V. See, "Gold nanoparticles delivery in mammalian live cells: A critical review," Nano Rev. 1(1), 4889 (2010).

    [135] S. Aghamiri, A. A. Ghavidel, F. Zandsalimi, S. Masoumi, N. H. Hafshejani, V. Jajarmi, "Nanoparticles-mediated CRISPR/Cas9 delivery: Applications in cancer treatment and detection," J. Drug. Deliv. Sci. Technol. 56, 101533 (2020).

    [136] C. Richter, J. T. Chang, P. C. Fineran, "Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems," Viruses 4(10), 2291–2311 (2012).

    [137] H. Mollanoori, S. Teimourian, "Therapeutic applications of CRISPR/Cas9 system in gene therapy," Biotechnol. Lett. 40(6), 907–914 (2018).

    [138] Y. Duan, G. Ma, X. Huang, P. A. D'Amore, F. Zhang, H. Lei, "The CRISPR/CAS9-created MDM2 T309G enhances vitreousinduced expression of MDM2 and proliferation and survival of cells," J. Biol. Chem. 291(31), 16339–16347 (2016).

    [139] S. Chira, D. Gulei, A. Hajitou, A. A. Zimta, P. Cordelier, I. Berindan-Neagoe, "CRISPR/Cas9: transcending the reality of genome editing," Mol. Ther. Nucl. Acids 7, 211–222 (2017).

    [140] J. Ren, Y. Zhao, "Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9," Protein Cell 8, 634–643 (2017).

    [141] S. Lin, B. T. Staahl, R. K. Alla, J. A. Doudna, "Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery," Elife 3, e04766 (2014).

    [142] G. J. Gibson, M. Yang, "What rheumatologists need to know about CRISPR/Cas9," Nat. Rev. Rheumatol. 13, 205–216 (2017).

    [143] P. Wang, L. Zhang, Y. Z. Xie, N. Wang, R. Tang, W. Zheng, X. Jiang, "Genome editing for cancer therapy: Delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core–shell nanocarrier," Adv. Sci. 4(11), 1700175 (2017).

    [144] R. Mout, M. Ray, G. Y. Tonga, Y.-W. Lee, T. Tay, K. Sasaki, V. M. Rotello, "Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing," ACS Nano 11(3), 2452–2458 (2017).

    [145] P. Wang, L. Lin, Z. Guo, J. Chen, H. Tian, X. Chen, H. Yang, "Highly fluorescent gene carrier based on Ag–Au alloy nanoclusters," Macromol. Biosci. 16, 160–167 (2016).

    [146] C. Sardoa, B. Bassib, E. F. Craparoa, C. Scialabbaa, E. Cabrinib, G. Dacarrob, A. D'Agostinob, A. Tagliettib, G. Giammonaa, P. Pallavicinib, G. Cavallaroa, "Gold nanostar–polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells," Int. J. Pharm. 519, 113–124 (2017).

    [147] M. C. Duran, S. Willenbrock, A. Barchanski, J.-M. V. Müller, A. Maiolini, J. T. Soller, S. Barcikowski, I. Nolte, K. Feige, H. M. Escobar, "Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: Efficiency and cytotoxicity," J. Nanobiotechnol. 9, 47 (2011).

    [148] B. Du, X. Gu, X. Han, G. Ding, Y. Wang, D. Li, E. Wang, J. Wang, "Lipid-coated gold nanoparticles functionalized by folic acid as gene vectors for targeted gene delivery in vitro and in vivo," Chem. Med. Chem. 12(21), 1768–1775 (2017).

    [149] A. Zhang, S. Pan, Y. Zhang, J. Chang, J. Cheng, Z. Huang, T. Li, C. Zhang, J. Martinez de la Fuentea, Q. Zhang, D. Cui, "Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy," Theranostics 9(12), 3443–3458 (2019).

    [150] K. Lee, M. Conboy, H. M. Park, F. Jiang, H. J. Kim, M. A. Dewitt, V. A. Mackley, K. Chang, A. Rao, C. Skinner, T. Shobha, M. Mehdipour, H. Liu, W.-C. Huang, F. Lan, N. L. Bray, S. Li, J. E. Corn, K. Kataoka, J. A. Doudna, I. Conboy, N. Murthy, "Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homologydirected DNA repair," Nat. Biomed. Eng. 1, 889– 901 (2017).

    [151] H. Chen, Y. Fan, X. Hao, C. Yang, Y. Peng, R. Guo, X. Shi, X. Cao, "Adoptive cellular immunotherapy of tumors via effective CpG delivery to dendritic cells using dendrimer-entrapped gold nanoparticles as a gene vector," J. Mater. Chem. B 8, 5052–5063 (2020).

    [152] E. Shaabani, M. Sharifiaghdam, H. De Keersmaecker, R. De Rycke, S. De Smedt, R. Faridi- Majidi, K. Braeckmans, J. C. Fraire, "Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing," Int. J. Mol. Sci. 22(2), 831 (2021).

    [153] R. Xiong, S. K. Samal, J. Demeester, A. G. Skirtach, S. C. De Smedt, K. Braeckmans, "Laserassisted photoporation: Fundamentals, technological advances and applications," Adv. Phys.: X 1, 596–620 (2016).

    [154] L. Wayteck, R. Xiong, K. Braeckmans, S. C. De Smedt, K. Raemdonck, "Comparing photoporation and nucleofection for delivery of small interfering RNA to cytotoxic T cells," J. Control. Release. 267, 154–162 (2017).

    [155] S. Courvoisier, N. Saklayen, M. Huber, J. Chen, E. D. Diebold, L. Bonacina, J.-P. Wolf, E. Mazur, "Plasmonic tipless pyramid arrays for cell poration," Nano Lett. 2015(7), 4461–4466 (2015).

    [156] Z. Lyu, F. Zhou, Q. Liu, H. Xue, Q. Yu, H. Chen, "A universal platform for macromolecular delivery into cells using gold nanoparticle layers via the photoporation effect," Adv. Funct. Mater. 26(32), 5787–5795 (2016).

    [157] J. Wu, H. Xue, Z. Lyu, Z. Li, Y. Qu, Y. Xu, L. Wang, Q. Yu, H. Chen, "Intracellular delivery platform for "Recalcitrant" cells: When polymeric carrier marries photoporation," ACS Appl. Mater. Interfaces 9(26), 21593–21598 (2017).

    [158] D. Lapotko, "Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications," Nanomedicine 4, 813–845 (2009).

    [159] E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, D. O. Lapotko, "Plasmonic nanobubbleenhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells," Biomaterials 33, 1821–1826 (2012).

    [160] E. Y. Lukianova-Hleb, M. B. Mutonga, D. O. Lapotko, "Cell-specific multifunctional processing of heterogeneous cell systems in a single laser pulse treatment," ACS Nano 6, 10973–10981 (2012).

    [161] R. Xiong, F. Joris, S. Liang, R. De Rycke, S. Lippens, J. Demeester, A. Skirtach, K. Raemdonck, U. Himmelreich, S. C. De Smedt, "Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging," Nano Lett. 16, 5975–5986 (2016).

    [162] R. Xiong, P. Verstraelen, J. Demeester, A. G. Skirtach, J.-P. Timmermans, S. C. De Smedt, W. H. De Vos, K. Braeckmans, "Selective labeling of individual neurons in dense cultured networks with nanoparticle-enhanced photoporation," Front. Cell Neurosci. 12, 80 (2018).

    [163] P. Chakravarty, C. D. Lane, T. M. Orlando, M. R. Prausnitz, "Parameters affecting intracellular delivery of molecules using laser-activated carbon nanoparticles," Nanomedicine 12(4), 1003–1011 (2016).

    [164] G. Bisker, D. Yelin, "Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis," J. Opt. Soc. Am. B 29, 1383–1393 (2012).

    [165] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen- Dechent, "Size-dependent cytotoxicity of gold nanoparticles," Small 3, 1941–1949 (2007).

    [166] N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, S. M. Hussain, "Surface charge of gold nanoparticles mediates mechanism of toxicity," Nanoscale 3, 410–420 (2011).

    [167] R. Lachaine, é. Boulais, M. Meunier, "From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles," ACS Photonics 1 (4), 331–336 (2014).

    [168] E. Boulais, R. Lachaine, M. Meunier, "Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation," Nano Lett. 12, 4763–4769 (2012).

    [169] J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens, F. C. Zanacchi, R. Magrassi, S. K. Singh, S. Kurungot, S. Szunerits, "Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy," Light: Sci. Appl. 7, 47– 57 (2018).

    [170] T. Pylaev, E. Vanzha, E. Avdeeva, B. Khlebtsov, N. Khlebtsov, "A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers," J. Biophotonics 12(1), e201800166 (2019).

    [171] M. Gai, M. A. Kurochkin, D. Li, B. N. Khlebtsov, L. Dong, N. Tarakina, R. Poston, D. J. Gould, J. Frueh, G. B. Sukhorukov, "In-situ NIR-laser mediated bioactive substance delivery to single cell for EGFP expression based on biocompatible microchamber- arrays," J. Control. Release 276, 84–92 (2018).

    [172] N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, E. Mazur, "Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates," ACS Nano 11, 3671–3680 (2017).

    [173] M. Schomaker, D. Heinemann, S. Kalies, S. Willenbrock, S. Wagner, I. Nolte, T. Ripken, H. M. Escobar, H. Meyer, A. Heisterkamp, "Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine," J. Biophotonics 13, 10 (2015).

    [174] A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. (Mike) Sapieha, M. Meunier, "In vivo lasermediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles," Nano Lett. 18(11), 6981–6988 (2018).

    [175] S. Batabyal, S. Gajjeraman, K. Tchedre, A. Dibas, W. Wright, S. Mohanty, "Near-Infrared Laser- Based Spatially Targeted Nano-enhanced Optical Delivery of Therapeutic Genes to Degenerated Retina," Mol. Ther.- Methods Clin. Dev. 17, 758– 770 (2020).

    [176] E. Lestrell, F. Patolsky, N. H. Voelcker, R. Elnathan, "Engineered nano-bio interfaces for intracellular delivery and sampling: Applications, agency and artefacts," Mater. Today 33, 87–104 (2019).

    [177] Y.-C. Wu, T.-H. Wu, D. L. Clemens, B.-Y. Lee, X. Wen, M. A. Horwitz, M. A. Teitell, P.-Y. Chiou, "Massively parallel delivery of large cargo into mammalian cells with light pulses," Nat. Methods 12, 439–444 (2015).

    [178] M. Madrid, N. Saklayen, W. Shen, M. Huber, N. Vogel, E. Mazur, "Laser-activated self-assembled thermoplasmonic nanocavity substrates for intracellular delivery," ACS Appl. Bio Mater. 1(6), 1793–1799 (2018).

    [179] L. Wang, J. Wu, Y. Hu, C. Hu, Y. Pan, Q. Yu, H. Chen, "Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery," J. Mater. Chem. 6, 4427–4436 (2018).

    [180] G. C. Messina, M. Dipalo, R. La Rocca, P. Zilio, V. Caprettini, R. P. Zaccaria, A. Toma, F. Tantussi, L. Berdondini, F. De Angelis, "Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes," Adv. Mater. 27(44), 7145– 7149 (2015).

    [181] Kurata, M. Tsukakoshi, T. Kasuya, Y. Ikawa, "The laser method for efficient introduction of foreign DNA into cultured cells," Exp. Cell Res. 162(2), 372–378 (1986).

    [182] Tirlapur, K. K€onig, "Targeted transfection by femtosecond laser," Nature 418, 290–291 (2002).

    [183] I. Clark, E. G. Hanania, J. Stevens, M. Gallina, A. Fieck, R. Brandes, B. O. Palsson, M. R. Koller, "Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types," J. Biomed. Opt. 11(1), 014034 (2006).

    [184] M. Leia, H. Xu, H. Yang, B. Yao, "Femtosecond laser-assisted microinjection into living neurons," J. Neurosci. Methods 174(2), 215–218 (2008).

    [185] H. A. Rendall, R. F. Marchington, B. B. Praveen, G. Bergmann, Y. Arita, A. Heisterkamp, F. J. Gunn-Moore, K. Dholakia, "High-throughput optical injection of mammalian cells using a Bessel light beam," Lab Chip 12, 4816–4820 (2012).

    [186] J. Liu, R. Xiong, T. Brans, S. Lippens, E. Parthoens, F. C. Zanacchi, R. Magrassi, S. K. Singh, S. Kurungot, S. Szunerits, "Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy," Light: Sci. Appl. 7, 47–57 (2018).

    [187] Z. Lyu, F. Zhou, Q. Liu, H. Xue, Q. Yu, H. A. Chen, "Universal platform for macromolecular deliveryinto cells using gold nanoparticle layers via the photoporation effect," Adv. Funct. Mater. 26(32), 5787–5795 (2016).

    [188] N. Saklayen, M. Huber, M. Madrid, V. Nuzzo, D. I. Vulis, W. Shen, J. Nelson, A. A. McClelland, A. Heisterkamp, E. Mazur, "Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates," ACS Nano 11, 3671–3680 (2017).

    [189] N. R. Y. Ho, G. S. Lim, N. R. Sundah, D. Lim, T. P. Loh, H. Shao, "Visual and modular detection of pathogen nucleic acids with enzyme-DNA molecular complexes," Nat. Commun. 9, 3238 (2018).

    [190] H. Y. Lau, J. R. Botella, "Advanced DNA-based point-of-care diagnostic methods for plant diseases detection," Front. Plant Sci. 8, 2016 (2017).

    [191] M. Y. C. Wu, M. Y. Hsu, S. J. Chen, D. K. Hwang, T. H. Yen, C. M. Cheng, "Point-of-care detection devices for food safety monitoring: Proactive disease prevention," Trends Biotechnol. 35, 288–300 (2017).

    [192] P. K. Drain, E. P. Hyle, F. Noubary, K. A. Freedberg, D. Wilson, W. R. Bishai, W. Rodriguez, I. V. Bassett, "Diagnostic point-of-care tests in resource-limited settings," Lancet Infect. Dis. 14, 239–249 (2014).

    [193] H. Xu, M. Gao, X. Tang, W. Zhang, D. Luo, M. Chen, "Micro/nano technology for next-generation diagnostics," Small Methods 4, 4 (2019).

    [194] M. Z. Yang, Y. Liu, X. Y. Jiang, "Barcoded point-ofcare bioassays," Chem. Soc. Rev. 48, 850–884 (2019).

    [195] J. S. Gootenberg, O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, F. Zhang, "Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6," Science 360, 439–444 (2018).

    [196] C. E. Jin, B. Koo, E. Y. Lee, J. Y. Kim, S. H. Kim, Y. Shin, "Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens," Biosens. Bioelectron. 111, 66–73 (2018).

    [197] U. Singh, V. Morya, A. Rajwar, A. Richard, C. B. Datta, C. Ghoroi, D. Bhatia, "DNA-functionalized nanoparticles for targeted biosensing and biological applications," ACS Omega 5(48), 30767–30774 (2020).

    [198] M. Cordeiro, F. F. Carlos, P. Pedrosa, A. Lopez, P. V. Baptista, "Gold nanoparticles for diagnostics: advances towards points of care," Diagnostics 6, 43 (2016).

    [199] S. Hwu, M. Garzuel, C. Forró, S. J. Ihle, A. M. Reichmuth, F. Kurdzesau, J. V€or€os, "An analytical method to control the surface density and stability of DNA-gold nanoparticles for an optimized biosensor," Colloids Surf. B: Biointerfaces 187, 110650 (2020).

    [200] Z. Yuan, J. Cheng, X. Cheng, Y. He, E. S. Yeung, "Highly sensitive DNA hybridization detection with single nanoparticle flash-lamp darkfield microscopy," Analyst. 137, 2930 (2012).

    [201] K. Sato, K. Hosokawa, M. Maeda, "Non-crosslinking gold nanoparticle aggregation as a detection method for single-base substitutions," Nucl. Acids Res. 33(1), e4 (2005).

    [202] H. Li, L. J. Rothberg, "Label-free colorimetric detection of specific sequences in genomic DNA ampli fied by the polymerase chain reaction," J. Am. Chem. Soc. 126, 10958–10961 (2004).

    [203] T. E. Pylaev, V. A. Khanadeev, B. N. Khlebtsov, L. A. Dykman, V. A. Bogatyrev, N. G. Khlebtsov, "Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods," Nanotechnology 22, 285501 (2011).

    [204] H. Xu, A. Xia, D. Wang, Y. Zhang, S. Deng, W. Lu, J. Luo, Q. Zhong, F. Zhang, L. Zhou, W. Zhang, Y. Wang, C. Yang, K. Chang, W. Fu, J. Cui, M. Gan, D. Luo, M. Chen, "An ultraportable and versatile point-of-care DNA testing platform," Sci. Adv. 6(17), eaaz7445 (2020).

    [205] Z. He, H. Yang, "Colourimetric detection of swinespeci fic DNA for halal authentication using gold nanoparticles," Food Control. 88, 9–14 (2018).

    [206] H. Kuang, W. Chen, D. Xu, L. Xu, Y. Zhu, L. Liu, H. Chu, C. Peng, C. Xu, S. Zhu, "Fabricated aptamer-based electrochemical "signal-off" sensor of Ochratoxin A," Biosens. Bioelectron. 26, 710– 716 (2010).

    [207] G. Dharanivasan, D. M. I. Jesse, T. Rajamuthuramalingam, G. Rajendran, S. Shanthi, K. Kathiravan, "Scanometric detection of tomato leaf curl New Delhi viral DNA using mono- and bifunctional AuNP-conjugated oligonucleotide probes," ACS Omega 4, 10094–10107 (2019).

    [208] J. Cheng, L. J. Kricka, Biochip Technology, Harwood Academic Publishers, Singapore (2001).

    [209] P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastmen, "Mechanism of heat flow in suspension of nano-sized particles (nanofluids)," Int. J. Heat Mass Transfer 45, 855–863 (2002).

    [210] M. Hu, G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029–7033 (2002).

    [211] S. Link, C. Burda, Z. L. Wang, M. A. El-Sayed, "Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation," J. Chem. Phys. 111, 1255–1264 (1999).

    [212] M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997).

    [213] J. Z. Zhang, "Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface," Acc. Chem. Res. 30, 423–429 (1997).

    [214] H. Li, J. Huang, J. Lv, H. An, X. Zhang, Z. Zhang, C. Fan, J. Hu, "Nanoparticle PCR: Nanogoldassisted PCR with enhanced specificity," Angew. Chem. Int. Ed. 44, 5100–5103 (2005).

    [215] M. Li, Y. C. Lin, C. C. Wu, H. S. Liu, "Enhancing the efficiency of a PCR using gold nanoparticles," Nucl. Acids Res 33, e184 (2005).

    [216] J. Pan, H. Li, X. Cao, J. Huang, X. Zhang, C. Fan, J. Hu, "Nanogold-assisted multi-round polymerase chain reaction (PCR)," J. Nanosci. Nanotechnol. 7, 4428–4433 (2007).

    [217] L. J. Mi, H. P. Zhu, X. D. Zhang, J. Hu, C. H. Fan, "Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR," Chin. Sci. Bull. 52, 2345–2349 (2007).

    [218] D. X. Cui, F. R. Tian, Y. Kong, I. Titushikin, H. J. Gao, "Effects of single-walled carbon nanotubes on the polymerase chain reaction," Nanotechnology 15, 154–157 (2004).

    [219] Z. Z. Zhang, M. C. Wang, H. J. An, "An aqueous suspension of carbon nanopowder enhances the efficiency of a polymerase chain reaction," Nanotechnology 18, 355706 (2007).

    [220] L. Nie, L. Z. Gao, X. Y. Yan, T. H. Wang, "Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery," Nanotechnology 18, 015101 (2007).

    [221] L. Yuan, Y. He, "Effect of surface charge of PDDAprotected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction," Analyst 138, 539–545 (2013).

    [222] L. Cavigli, B. N. Khlebtsov, S. Centi, N. G. Khlebtsov, R. Pini, F. Ratto, "Photostability of contrast agents for photoacoustics: The case of gold nanorods," Nanomaterials 11, 116 (2021).

    [223] E. Vanzha, T. Pylaev, V. Khanadeev, S. Konnova, V. Fedorova, N. Khlebtsov, "Gold nanoparticleassisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material," RSC Adv. 6, 110146 (2016).

    [224] R. H. Don, P. T. Cox, B. J. Wainwright, K. Baker, J. S. Mattick, "'Touchdown' PCR to circumvent spurious priming during gene amplification," Nucl. Acids Res. 19, 4008 (1991).

    [225] Y.-C. Lin, H.-L. Wu, "Nano-PCR: Breaking the bottom limit of the PCR denaturation temperature using nanogold," TRANSDUCERS and EUROSENSORS `07 – Int. Solid-State Sensors, Actuators and Microsystems Conf., pp. 391–394, IEEE, Lyon (2007).

    [226] B. V. Vu, D. Litvinov, R. C. Willson, "Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption," Anal. Chem. 80, 5462–5467 (2008).

    [227] W. Wan, J. T. W. Yeow, M. I. Van Dyke, "Sizedependent PCR inhibitory effect induced by gold nanoparticles," Proc. 31st Annual Int. Conf. IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, pp. 2771– 2774, IEEE, Minneapolis (2009).

    [228] A. L. Haber, K. R. Griffiths, ?. K. Jamting, K. R. Emslie, "Addition of gold nanoparticles to realtime PCR: Effect on PCR profile and SYBR Green I fluorescence," Anal. Bioanal. Chem. 392, 887– 896 (2008).

    [229] S.-H. Huang, T.-C. Yang, M.-H. Tsai, I.-S. Tsai, H.-C. Lu, P.-H. Chuang, L. Wan, Y.-J. Lin, C.-H. Lai, C.-W. Lin, "Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus," Nanotechnology 19, 405101 (2008).

    [230] K. H. Cheong, D. K. Yi, J.-G. Lee, J.-M. Park, M. J. Kim, J. B. Edel, C. Ko, "Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber," Lab Chip 8, 810– 813 (2008).

    Timofey Pylaev, Elena Avdeeva, Nikolai Khlebtsov. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2130003
    Download Citation