• Acta Physica Sinica
  • Vol. 68, Issue 7, 078501-1 (2019)
Dao-You Guo1, Pei-Gang Li2、3, Zheng-Wei Chen2, Zhen-Ping Wu2, and Wei-Hua Tang2、3、*
Author Affiliations
  • 1Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 2Laboratory of Information Functional Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.7498/aps.68.20181845 Cite this Article
    Dao-You Guo, Pei-Gang Li, Zheng-Wei Chen, Zhen-Ping Wu, Wei-Hua Tang. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector [J]. Acta Physica Sinica, 2019, 68(7): 078501-1 Copy Citation Text show less
    Crystal structures of several isomers of Ga2O3Ga2O3几个同分异构体的晶体结构
    Fig. 1. Crystal structures of several isomers of Ga2O3Ga2O3几个同分异构体的晶体结构
    Interconversion relation of Ga2O3 isomers[4]Ga2O3各同分异构体的相互转换关系[4]
    Fig. 2. Interconversion relation of Ga2O3 isomers[4]Ga2O3各同分异构体的相互转换关系[4]
    Crystal structure and lattice constant of β-Ga2O3[21−23]β-Ga2O3的晶体结构及晶格常数[21−23]
    Fig. 3. Crystal structure and lattice constant of β-Ga2O3[2123]β-Ga2O3的晶体结构及晶格常数[2123]
    Physical properties and device applications of β-Ga2O3 materialβ-Ga2O3材料具有的物理性质及其对应的器件应用
    Fig. 4. Physical properties and device applications of β-Ga2O3 material β-Ga2O3材料具有的物理性质及其对应的器件应用
    (a) The transmittance of Sn-doped-Ga2O3 thin films prepared at different temperatures[75]; (b) the relationship between the conductivity of Sn doped -Ga2O3 thin films and the deposition temperature[24](a)在不同温度下制备获得的Sn掺杂β-Ga2O3薄膜的透过率[75]; (b) Sn掺杂β-Ga2O3薄膜的导电率随沉积温度的变化关系[24]
    Fig. 5. (a) The transmittance of Sn-doped-Ga2O3 thin films prepared at different temperatures[75]; (b) the relationship between the conductivity of Sn doped -Ga2O3 thin films and the deposition temperature[24](a)在不同温度下制备获得的Sn掺杂β-Ga2O3薄膜的透过率[75]; (b) Sn掺杂β-Ga2O3薄膜的导电率随沉积温度的变化关系[24]
    The relationship of the transmittance (a)[81], the band gap (a)[81], the resistivity (b)[82] with Sn different doping concentration in Sn-doped Ga2O3 thin filmsSn掺杂Ga2O3薄膜的透过率和带隙(a)[81]及电阻率(b)[82]随Sn掺杂浓度的变化关系
    Fig. 6. The relationship of the transmittance (a)[81], the band gap (a)[81], the resistivity (b)[82] with Sn different doping concentration in Sn-doped Ga2O3 thin films Sn掺杂Ga2O3薄膜的透过率和带隙(a)[81]及电阻率(b)[82]随Sn掺杂浓度的变化关系
    (a) Current versus light output power and forward voltage (L-I-V) characteristic curves and (b) typical electroluminescence spectra measured for near-ultraviolet LEDs with Ga2O3:ITO and ITO transparent conducting electrodes; the inset shows top-view SEM image of near-ultraviolet[85]ITO与Ga2O3:ITO薄膜性能对比 (a)光输出功率–电流–电压特征曲线; (b)近紫外LED的电致发光光谱[85]
    Fig. 7. (a) Current versus light output power and forward voltage (L-I-V) characteristic curves and (b) typical electroluminescence spectra measured for near-ultraviolet LEDs with Ga2O3:ITO and ITO transparent conducting electrodes; the inset shows top-view SEM image of near-ultraviolet[85]ITO与Ga2O3:ITO薄膜性能对比 (a)光输出功率–电流–电压特征曲线; (b)近紫外LED的电致发光光谱[85]
    Au-Ga2O3 nanowire-Au photodetector: (a) I-V characteristic curve of the detector in dark. The inset of is a typical SEM image of the device, the scale bar: 200 nm; (b) real-time photoresponse of the detector to 254 nm light[91]Au-Ga2O3纳米线-Au光电探测器 (a)黑暗情况下的I–V特性曲线及其器件结构SEM图(插图); (b)–8 V偏压下对254 nm光的I–t响应特性曲线[91]
    Fig. 8. Au-Ga2O3 nanowire-Au photodetector: (a) I-V characteristic curve of the detector in dark. The inset of is a typical SEM image of the device, the scale bar: 200 nm; (b) real-time photoresponse of the detector to 254 nm light[91]Au-Ga2O3纳米线-Au光电探测器 (a)黑暗情况下的I–V特性曲线及其器件结构SEM图(插图); (b)–8 V偏压下对254 nm光的I–t响应特性曲线[91]
    Solar blind photoelectric properties of photodetector based on the bridged β-Ga2O3 nanowires: (a) Schematic diagram of the devices; (b) time-dependent photoresponse of the bridged β-Ga2O3 nanowires measured in dry air under UVC (~2 mW cm–2 at 254 nm) illumination with a period of 60 s at a bias voltage of 50 V; (c) I-V characteristics of the bridged β-Ga2O3 nanowires in dark (squares), under 365 nm light (triangles), and under 254 nm light (circles). The I-V curve measured under 254 nm light is plotted on a linear scale in the inset; (d) spectral response of the bridged β-Ga2O3 nanowires revealing that the device is blind to solar light. The dashed line indicates the lowest wavelength of the solar spectrum on Earth[88]β-Ga2O3纳米桥光电探测器的日盲光电性质 (a) 器件的结构示意图; (b) 50 V偏压下对254 nm光的I–t响应特性; (c) 黑暗及对365和254 nm光响应的I–V特性曲线; (d) 不同波长的光谱响应特性[88]
    Fig. 9. Solar blind photoelectric properties of photodetector based on the bridged β-Ga2O3 nanowires: (a) Schematic diagram of the devices; (b) time-dependent photoresponse of the bridged β-Ga2O3 nanowires measured in dry air under UVC (~2 mW cm–2 at 254 nm) illumination with a period of 60 s at a bias voltage of 50 V; (c) I-V characteristics of the bridged β-Ga2O3 nanowires in dark (squares), under 365 nm light (triangles), and under 254 nm light (circles). The I-V curve measured under 254 nm light is plotted on a linear scale in the inset; (d) spectral response of the bridged β-Ga2O3 nanowires revealing that the device is blind to solar light. The dashed line indicates the lowest wavelength of the solar spectrum on Earth[88]β-Ga2O3纳米桥光电探测器的日盲光电性质 (a) 器件的结构示意图; (b) 50 V偏压下对254 nm光的I–t响应特性; (c) 黑暗及对365和254 nm光响应的I–V特性曲线; (d) 不同波长的光谱响应特性[88]
    (a) Room-temperature spectral responses of the Ga2O3 nanowires photodetector measured with different applied biases[92]; (b) Ga2O3 nanowire photodetector with Cr/Au as electrodes[93]; (c) transit responses measured from the three fabricated photodetectors grown at different temperatures[93]; (d) room-temperature spectral responses of the photodetector under different bias[93](a) Ga2O3纳米线光电探测器在不同偏压下的光谱响应[92]; (b)在Cr/Au电极上生长获得的Ga2O3纳米线光电探测器结构[93]; (c)不同温度下生长的Ga2O3纳米线对255 nm光的I–t响应曲线[93]; (d)不同偏压下的光谱响应[93]
    Fig. 10. (a) Room-temperature spectral responses of the Ga2O3 nanowires photodetector measured with different applied biases[92]; (b) Ga2O3 nanowire photodetector with Cr/Au as electrodes[93]; (c) transit responses measured from the three fabricated photodetectors grown at different temperatures[93]; (d) room-temperature spectral responses of the photodetector under different bias[93](a) Ga2O3纳米线光电探测器在不同偏压下的光谱响应[92]; (b)在Cr/Au电极上生长获得的Ga2O3纳米线光电探测器结构[93]; (c)不同温度下生长的Ga2O3纳米线对255 nm光的I–t响应曲线[93]; (d)不同偏压下的光谱响应[93]
    (a) SEM image of a Ga2O3 individual-nanobelt device[94]; (b) spectral response of the devices (nanobelts with different widths of 800 nm and 1.6 mm) measured at a bias of 15 V. The schematic configuration of a photoconductive measurement is inserted in the top-right corner[94]; (c) spectral response of an individual In-doped Ga2O3 nanobelt photodetector. The inset is a typical SEM image of an individual In-doped Ga2O3 nanobelt device[95]; (d) logarithmic plot of I-V curves of the individual Ga2O3 and In-doped Ga2O3 nanobelt photodetector under illumination with the 250 nm wavelength light and in dark conditions[95](a)单条Ga2O3纳米带光电探测器的SEM图[94]; (b)不同带宽Ga2O3纳米带的光谱响应, 插图为探测器结构[94]; (c) In掺杂的Ga2O3单条纳米带光电探测器的光谱响应[95]; (d)纯Ga2O3和In:Ga2O3单条纳米带黑暗情况及在250 nm光照下的I–V曲线[95]
    Fig. 11. (a) SEM image of a Ga2O3 individual-nanobelt device[94]; (b) spectral response of the devices (nanobelts with different widths of 800 nm and 1.6 mm) measured at a bias of 15 V. The schematic configuration of a photoconductive measurement is inserted in the top-right corner[94]; (c) spectral response of an individual In-doped Ga2O3 nanobelt photodetector. The inset is a typical SEM image of an individual In-doped Ga2O3 nanobelt device[95]; (d) logarithmic plot of I-V curves of the individual Ga2O3 and In-doped Ga2O3 nanobelt photodetector under illumination with the 250 nm wavelength light and in dark conditions[95](a)单条Ga2O3纳米带光电探测器的SEM图[94]; (b)不同带宽Ga2O3纳米带的光谱响应, 插图为探测器结构[94]; (c) In掺杂的Ga2O3单条纳米带光电探测器的光谱响应[95]; (d)纯Ga2O3和In:Ga2O3单条纳米带黑暗情况及在250 nm光照下的I–V曲线[95]
    (a) SEM image of Ga2O3 nanoflowers; (b) I-t response curve of Ga2O3 nanoflowers to 254 nm light[97](a) Ga2O3纳米花的SEM图; (b) Ga2O3纳米花对254 nm光的I–t响应曲线[97]
    Fig. 12. (a) SEM image of Ga2O3 nanoflowers; (b) I-t response curve of Ga2O3 nanoflowers to 254 nm light[97](a) Ga2O3纳米花的SEM图; (b) Ga2O3纳米花对254 nm光的I–t响应曲线[97]
    Solar-blind ultraviolet photodetector based on Single ZnO-Ga2O3 core-shell microwire ZnO/Ga2O3 core-shell: (a) Device schematic diagram; (b)I-V characteristic curve in dark and under 254 nm light; (c) spectral response of the device at −6 V bias[100]; (d) the photoresponse spectrum of the device at 0 V; (e) the time response under the excitation of 266 nm pulse laser at 0 V[101]. Au/Ga2O3 nanowire Schottky vertical structure photodetector: (f) device schematic diagram; (g) spectral responses of the device at zero bias and under reverse bias of 10 V. Inset shows the responsivity of photodetectors at the wavelength of 254 nm as a function of reverse bias; (h) decay edge of the current response at reverse bias of 10 V[102].ZnO/Ga2O3核/壳结构的日盲紫外探测器 (a)器件示意图; (b)黑暗和254 nm光照下的I–V特征曲线; (c)–6 V偏压下的光谱响应[100]; (d)0 V偏压下的光谱响应; (e)光电流衰减[101]. Au/Ga2O3纳米线Schottky型垂直结构的光电探测器 (f)器件示意图; (g)光谱响应; (h)光电流衰减[102]
    Fig. 13. Solar-blind ultraviolet photodetector based on Single ZnO-Ga2O3 core-shell microwire ZnO/Ga2O3 core-shell: (a) Device schematic diagram; (b)I-V characteristic curve in dark and under 254 nm light; (c) spectral response of the device at −6 V bias[100]; (d) the photoresponse spectrum of the device at 0 V; (e) the time response under the excitation of 266 nm pulse laser at 0 V[101]. Au/Ga2O3 nanowire Schottky vertical structure photodetector: (f) device schematic diagram; (g) spectral responses of the device at zero bias and under reverse bias of 10 V. Inset shows the responsivity of photodetectors at the wavelength of 254 nm as a function of reverse bias; (h) decay edge of the current response at reverse bias of 10 V[102]. ZnO/Ga2O3核/壳结构的日盲紫外探测器 (a)器件示意图; (b)黑暗和254 nm光照下的I–V特征曲线; (c)–6 V偏压下的光谱响应[100]; (d)0 V偏压下的光谱响应; (e)光电流衰减[101]. Au/Ga2O3纳米线Schottky型垂直结构的光电探测器 (f)器件示意图; (g)光谱响应; (h)光电流衰减[102]
    Solar-blind ultraviolet photodetector based on β-Ga2O3 flake: (a) Schematic of the entire exfoliated β-Ga2O3 flake based photodetector fabrication process; (b) optical image of the fabricated photodetector; (c) time-dependent photoresponse of the fabricated photodetector under various illumination conditions (254, 365, 532 and 650 nm light exposure); (d) responsivity as a function of wavelength[103]; (e) the reactive ion etching assisted thinning of a β-Ga2O3 flake[104]; (f) the I-V curve; (g) energy band structure diagram of the schottky junction MSM structure solar-blind ultraviolet photodetector based on Ni/Au electrodes and β-Ga2O3 flake under different wavelengths[105]; (h), (i) the SEM image of the MSM structure solar-blind ultraviolet photodetector based on graphene electrode and β-Ga2O3 flake[106]基于β-Ga2O3薄片的日盲紫外探测器 (a)机械剥离获得β-Ga2O3微米薄片及器件制作流程示意图; (b)器件的光学照片; (c)不同波长光照下的器件的I–t响应曲线; (d) 光谱响应曲线[103]; (e) β-Ga2O3微米薄片的反应离子刻蚀减薄[104]; (f) Ni/Au电极与β-Ga2O3薄片构成的MSM结构肖特基结日盲紫外探测器在不用波长下的I–V曲线; (g)能带结构示意图[105]; (h), (i)石墨烯电极与β-Ga2O3薄片构成的MSM结构日盲紫外探测器的SEM图[106]
    Fig. 14. Solar-blind ultraviolet photodetector based on β-Ga2O3 flake: (a) Schematic of the entire exfoliated β-Ga2O3 flake based photodetector fabrication process; (b) optical image of the fabricated photodetector; (c) time-dependent photoresponse of the fabricated photodetector under various illumination conditions (254, 365, 532 and 650 nm light exposure); (d) responsivity as a function of wavelength[103]; (e) the reactive ion etching assisted thinning of a β-Ga2O3 flake[104]; (f) the I-V curve; (g) energy band structure diagram of the schottky junction MSM structure solar-blind ultraviolet photodetector based on Ni/Au electrodes and β-Ga2O3 flake under different wavelengths[105]; (h), (i) the SEM image of the MSM structure solar-blind ultraviolet photodetector based on graphene electrode and β-Ga2O3 flake[106]基于β-Ga2O3薄片的日盲紫外探测器 (a)机械剥离获得β-Ga2O3微米薄片及器件制作流程示意图; (b)器件的光学照片; (c)不同波长光照下的器件的I–t响应曲线; (d) 光谱响应曲线[103]; (e) β-Ga2O3微米薄片的反应离子刻蚀减薄[104]; (f) Ni/Au电极与β-Ga2O3薄片构成的MSM结构肖特基结日盲紫外探测器在不用波长下的I–V曲线; (g)能带结构示意图[105]; (h), (i)石墨烯电极与β-Ga2O3薄片构成的MSM结构日盲紫外探测器的SEM图[106]
    Vertical solar-blind deep-ultraviolet schottky photodetectors based onβ-Ga2O3 substrates: (a) Fabrication process for photodetector[109]; (b) spectral responser[109]; (c) photograph of the flame detector. The dashed circles are on the edges of the transparent electrodes[89]; (d) transient response of the detector[89]垂直结构肖特基型β-Ga2O3单晶日盲紫外探测器 (a)制作过程[109]; (b)光谱响应[109]; (c)实物图[89]; (d)瞬态光响应[89]
    Fig. 15. Vertical solar-blind deep-ultraviolet schottky photodetectors based onβ-Ga2O3 substrates: (a) Fabrication process for photodetector[109]; (b) spectral responser[109]; (c) photograph of the flame detector. The dashed circles are on the edges of the transparent electrodes[89]; (d) transient response of the detector[89]垂直结构肖特基型β-Ga2O3单晶日盲紫外探测器 (a)制作过程[109]; (b)光谱响应[109]; (c)实物图[89]; (d)瞬态光响应[89]
    (a) Dark I-V characteristics of the Au-Ga2O3 Schottky photodiode annealed at various temperatures. The inset shows the device configuration[110]; (b) spectral response of the Au-Ga2O3 Schottky photodiode before and after annealing at 400℃. The inset shows the reverse I-V characteristics of the photodiode annealed at 400℃ taken in dark and under illumination with 240 nm light[110]; (c) schematic structure of a photodiode composed of a Au Schottky contact and a β-Ga2O3 single-crystal substrate with a sol-gel prepared cap layer.[111]; (d) spectral response of Ga2O3 photodiodes with and without a cap layer at reverse and forward biases of 3 V. The inset shows the incident light intensity dependence of the photocurrent at forward and reverse biases of 3 V under illumination with 250 nm light[111](a) β-Ga2O3单晶与Au电极在不同温度下退火后的I–V曲线[110]; (b)未退火和400℃下退火后Au/β-Ga2O3单晶肖特基型光电探测器的光谱响应[110]; (c)在β-Ga2O3单晶上采用溶胶凝胶法制备高绝缘β-Ga2O3薄膜并与Au电极构成的光电探测器[111]; (d)有无高绝缘β-Ga2O3薄膜层的光谱响应对比图[111]
    Fig. 16. (a) Dark I-V characteristics of the Au-Ga2O3 Schottky photodiode annealed at various temperatures. The inset shows the device configuration[110]; (b) spectral response of the Au-Ga2O3 Schottky photodiode before and after annealing at 400℃. The inset shows the reverse I-V characteristics of the photodiode annealed at 400℃ taken in dark and under illumination with 240 nm light[110]; (c) schematic structure of a photodiode composed of a Au Schottky contact and a β-Ga2O3 single-crystal substrate with a sol-gel prepared cap layer.[111]; (d) spectral response of Ga2O3 photodiodes with and without a cap layer at reverse and forward biases of 3 V. The inset shows the incident light intensity dependence of the photocurrent at forward and reverse biases of 3 V under illumination with 250 nm light[111](a) β-Ga2O3单晶与Au电极在不同温度下退火后的I–V曲线[110]; (b)未退火和400℃下退火后Au/β-Ga2O3单晶肖特基型光电探测器的光谱响应[110]; (c)在β-Ga2O3单晶上采用溶胶凝胶法制备高绝缘β-Ga2O3薄膜并与Au电极构成的光电探测器[111]; (d)有无高绝缘β-Ga2O3薄膜层的光谱响应对比图[111]
    Solar-blind ultraviolet photodetectors based on graphene/β-Ga2O3 single crystal heterojunction[112]: (a) Schematic diagram of device structure; (b) I-V characteristics of the photodetectors in dark and under 365 nm light irradiation; (c) normalized spectral selectivity; (b) energy band diagram at forward bias voltage石墨烯/β-Ga2O3单晶日盲紫外探测器[112] (a)器件结构示意图; (b)黑暗及365 nm光照下的I–V曲线; (c)光谱响应; (d)能带结构示意图
    Fig. 17. Solar-blind ultraviolet photodetectors based on graphene/β-Ga2O3 single crystal heterojunction[112]: (a) Schematic diagram of device structure; (b) I-V characteristics of the photodetectors in dark and under 365 nm light irradiation; (c) normalized spectral selectivity; (b) energy band diagram at forward bias voltage 石墨烯/β-Ga2O3单晶日盲紫外探测器[112]  (a)器件结构示意图; (b)黑暗及365 nm光照下的I–V曲线; (c)光谱响应; (d)能带结构示意图
    (a) In-plane XRD measurement results for the Ga2O3 film; (b) I-V characteristics of the Ga2O3 film photodetector in the dark, under black light irradiation, and under low-pressure mercury lamp irradiation[90](a) Ga2O3薄膜的面内XRD图; (b) Ga2O3薄膜在黑暗及不同光照下的I–V曲线[90]
    Fig. 18. (a) In-plane XRD measurement results for the Ga2O3 film; (b) I-V characteristics of the Ga2O3 film photodetector in the dark, under black light irradiation, and under low-pressure mercury lamp irradiation[90](a) Ga2O3薄膜的面内XRD图; (b) Ga2O3薄膜在黑暗及不同光照下的I–V曲线[90]
    Schematic diagram (a) and spectral responses under different bias (b) of Ga2O3/GaN photodetector[117]; Schematic diagram (c) and spectral responses under different bias (d) of Ga2O3/AlGaN/GaN photodetector[118]; Schematic diagram (e) and spectral responses under different bias (f) of Ga2O3/InGaN/GaN photodetector[119]; Energy band diagram of area near the surface of β-Ga2O3 and Au in the dark (g), spectral responses under different bias of Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles (h)[120](a) Ga2O3/GaN光电探测器结构; (b) Ga2O3/GaN光电探测器在不同偏压下的光谱响应[117]; (c) Ga2O3/AlGaN/GaN光电探测器结构; (d) Ga2O3/AlGaN/GaN光电探测器在不同偏压下的光谱响应[118]; (e) Ga2O3/InGaN/GaN光电探测器结构; (f) Ga2O3/InGaN/GaN光电探测器在不同偏压下的光谱响应[119]; (g)有无Au纳米颗粒与Ga2O3界面形成的能带结构示意图; (h) Au纳米颗粒/Ga2O3光电探测器在不同偏压下的光谱响应[120]
    Fig. 19. Schematic diagram (a) and spectral responses under different bias (b) of Ga2O3/GaN photodetector[117]; Schematic diagram (c) and spectral responses under different bias (d) of Ga2O3/AlGaN/GaN photodetector[118]; Schematic diagram (e) and spectral responses under different bias (f) of Ga2O3/InGaN/GaN photodetector[119]; Energy band diagram of area near the surface of β-Ga2O3 and Au in the dark (g), spectral responses under different bias of Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles (h)[120](a) Ga2O3/GaN光电探测器结构; (b) Ga2O3/GaN光电探测器在不同偏压下的光谱响应[117]; (c) Ga2O3/AlGaN/GaN光电探测器结构; (d) Ga2O3/AlGaN/GaN光电探测器在不同偏压下的光谱响应[118]; (e) Ga2O3/InGaN/GaN光电探测器结构; (f) Ga2O3/InGaN/GaN光电探测器在不同偏压下的光谱响应[119]; (g)有无Au纳米颗粒与Ga2O3界面形成的能带结构示意图; (h) Au纳米颗粒/Ga2O3光电探测器在不同偏压下的光谱响应[120]
    Schematic diagram (a) and spectral responses under 2 V reverse bias (b) of SiC/Ga2O3 photodetector[121](a) Ga2O3/SiC光电探测器结构; (b) Ga2O3/SiC光电探测器在2 V反偏压下的光谱响应[121]
    Fig. 20. Schematic diagram (a) and spectral responses under 2 V reverse bias (b) of SiC/Ga2O3 photodetector[121](a) Ga2O3/SiC光电探测器结构; (b) Ga2O3/SiC光电探测器在2 V反偏压下的光谱响应[121]
    (a) Schematic diagram of the β-Ga2O3 thin film MSM structure photodetector[123; (b) the effect of Ga2O3 film thickness on light-dark ratio of the MSM structure photodetector[124]; (c), (d) MSM structure arrays photodetector[125]; (e)I-t curves of the β-Ga2O3 thin films MSM structure photodetector with unannealed (Ohmic-type up) and annealed treatment in O2 atmosphere (Schottky-type, down), respectively[126]. I-t curves of the MSM structure photodetector based on β-Ga2O3 thin films doped with different element: (f) Mg doped[128]; (g) Mn doped[127]; (h) Zn doped[129]; (i) Sn doped[130](a) Ga2O3薄膜MSM结构日盲紫外探测器的结构示意图[123]; (b) MSM结构中Ga2O3薄膜厚度对探测器光暗比的影响[124]; (c), (d) MSM结构阵列探测器[125]; (e)氧气氛退火处理构成的肖特基结与未退火欧姆接触MSM结构探测器的I–t曲线[126]. 不同元素掺杂Ga2O3薄膜MSM结构探测器的I–t曲线 (f) Mg掺杂[128]; (g) Mn掺杂[127]; (h) Zn掺杂[129]; (i) Sn掺杂[130]
    Fig. 21. (a) Schematic diagram of the β-Ga2O3 thin film MSM structure photodetector[123; (b) the effect of Ga2O3 film thickness on light-dark ratio of the MSM structure photodetector[124]; (c), (d) MSM structure arrays photodetector[125]; (e)I-t curves of the β-Ga2O3 thin films MSM structure photodetector with unannealed (Ohmic-type up) and annealed treatment in O2 atmosphere (Schottky-type, down), respectively[126]. I-t curves of the MSM structure photodetector based on β-Ga2O3 thin films doped with different element: (f) Mg doped[128]; (g) Mn doped[127]; (h) Zn doped[129]; (i) Sn doped[130](a) Ga2O3薄膜MSM结构日盲紫外探测器的结构示意图[123]; (b) MSM结构中Ga2O3薄膜厚度对探测器光暗比的影响[124]; (c), (d) MSM结构阵列探测器[125]; (e)氧气氛退火处理构成的肖特基结与未退火欧姆接触MSM结构探测器的I–t曲线[126]. 不同元素掺杂Ga2O3薄膜MSM结构探测器的I–t曲线 (f) Mg掺杂[128]; (g) Mn掺杂[127]; (h) Zn掺杂[129]; (i) Sn掺杂[130]
    Schematic diagram (a) [138] and photoresponses to 254 nm ultraviolet light under different bias (b) [138] of graphene/Ga2O3/graphene vertical structure photodetector; UV-vis absorbance spectrum (c) [139] and I-V cures under the different wavelength light illumination (d) [139] of the bare Ga2O3 thin film and Au nanoparticles/Ga2O3 composite thin film; SEM image (e) and I-V cures under the different wavelength light illumination (f) [140] of Ga2O3 thin film/nanowire grown induced by Al2O3 thin layer[140]石墨烯/Ga2O3/石墨烯垂直结构日盲紫外探测器的结构示意图[138](a)及其不同偏压下对254 nm紫外光的响应度(b)[138]; 纯Ga2O3及表面附着有Au纳米颗粒Ga2O3薄膜的紫外可见吸收(c)[139]和不同光照下的I–V曲线(d)[139]; 引入Al2O3薄层生长获得的Ga2O3薄膜/纳米线SEM图(e)[140]和不同光照下的I–V曲线(f)[140]
    Fig. 22. Schematic diagram (a) [138] and photoresponses to 254 nm ultraviolet light under different bias (b) [138] of graphene/Ga2O3/graphene vertical structure photodetector; UV-vis absorbance spectrum (c) [139] and I-V cures under the different wavelength light illumination (d) [139] of the bare Ga2O3 thin film and Au nanoparticles/Ga2O3 composite thin film; SEM image (e) and I-V cures under the different wavelength light illumination (f) [140] of Ga2O3 thin film/nanowire grown induced by Al2O3 thin layer[140]石墨烯/Ga2O3/石墨烯垂直结构日盲紫外探测器的结构示意图[138](a)及其不同偏压下对254 nm紫外光的响应度(b)[138]; 纯Ga2O3及表面附着有Au纳米颗粒Ga2O3薄膜的紫外可见吸收(c)[139]和不同光照下的I–V曲线(d)[139]; 引入Al2O3薄层生长获得的Ga2O3薄膜/纳米线SEM图(e)[140]和不同光照下的I–V曲线(f)[140]
    Schematic diagram (a) [142], I-V cures in dark and under 254 nm with different light intensity illumination (b) [142], and schematic energy band diagrams (c) [142] of the β-Ga2O3/NSTO heterojunction self-powered photodetector; Schematic diagram of Ga2O3/P-Si PN junction detector (d) [143]; Rectifier features (e), schematic diagram (e) and spectral response (f) of the Ga2O3/Ga:ZnO heterojunction photodetector[145]; Schematic diagram (g) [145], I-V cures in dark and under the different wavelength light illumination (h) [146]; Spectral response (i) and I-t cures under the different wavelength light illumination (j) of the Sn:Ga2O3/GaN PN junction photodetector[145]; Schematic diagram of Ga2O3/SiC/P-Si PIN junction photodetector (k) [148]and graphene/Ga2O3/SiC photodetector (l)[149]Ga2O3/NSTO异质结自供电探测器的结构示意图(a)[142] 、黑暗及254 nm不同光强下的I–V曲线(b)[142]和异质结界面处光生载流子输运的能带结构示意图(c)[142]; Ga2O3/P-Si PN结探测器的结构示意图(d)[143]; Ga2O3/Ga:ZnO异质结探测器的整流特性及结构示意图(e)[145]和光谱响应(f)[145]; Ga2O3/GaN PN结探测器的结构示意图(g)[146]和黑暗及不同波长光照下的I–V曲线(h)[146]; Sn:Ga2O3/GaN PN结探测器的光谱响应(i)[144]和不同波长光照下的I–t曲线(j)[147]; Ga2O3/SiC/P-Si PIN结(k)[148]和石墨烯/Ga2O3/SiC探测器的结构示意图(l)[149]
    Fig. 23. Schematic diagram (a) [142], I-V cures in dark and under 254 nm with different light intensity illumination (b) [142], and schematic energy band diagrams (c) [142] of the β-Ga2O3/NSTO heterojunction self-powered photodetector; Schematic diagram of Ga2O3/P-Si PN junction detector (d) [143]; Rectifier features (e), schematic diagram (e) and spectral response (f) of the Ga2O3/Ga:ZnO heterojunction photodetector[145]; Schematic diagram (g) [145], I-V cures in dark and under the different wavelength light illumination (h) [146]; Spectral response (i) and I-t cures under the different wavelength light illumination (j) of the Sn:Ga2O3/GaN PN junction photodetector[145]; Schematic diagram of Ga2O3/SiC/P-Si PIN junction photodetector (k) [148]and graphene/Ga2O3/SiC photodetector (l)[149]Ga2O3/NSTO异质结自供电探测器的结构示意图(a)[142] 、黑暗及254 nm不同光强下的I–V曲线(b)[142]和异质结界面处光生载流子输运的能带结构示意图(c)[142]; Ga2O3/P-Si PN结探测器的结构示意图(d)[143]; Ga2O3/Ga:ZnO异质结探测器的整流特性及结构示意图(e)[145]和光谱响应(f)[145]; Ga2O3/GaN PN结探测器的结构示意图(g)[146]和黑暗及不同波长光照下的I–V曲线(h)[146]; Sn:Ga2O3/GaN PN结探测器的光谱响应(i)[144]和不同波长光照下的I–t曲线(j)[147]; Ga2O3/SiC/P-Si PIN结(k)[148]和石墨烯/Ga2O3/SiC探测器的结构示意图(l)[149]
    Solar-blind ultraviolet photodetector based on a-GaOx amorphous film and β-Ga2O3 film[159]: (a) MSM structure diagram; (b) spectral response; (c) energy band structure diagrama-GaOx非晶薄膜和β-Ga2O3薄膜日盲紫外探测器[159] (a) MSM结构示意图; (b)光谱响应; (c)能带结构示意图
    Fig. 24. Solar-blind ultraviolet photodetector based on a-GaOx amorphous film and β-Ga2O3 film[159]: (a) MSM structure diagram; (b) spectral response; (c) energy band structure diagram a-GaOx非晶薄膜和β-Ga2O3薄膜日盲紫外探测器[159]  (a) MSM结构示意图; (b)光谱响应; (c)能带结构示意图
    MSM structure solar-blind ultraviolet photodetector: (a) Schematic diagram of MSM structure[160]; (b) spectral response comparison of Ga2O3 single crystal and thin film[160]; (c) MSM structure[162]; (d) spectral response comparison of Ga2O3 thin films annealed in different atmospheres[161]; (e) spectral response comparison of Ga2O3 thin films grown under different oxygen pressures[162]; (f) spectral response comparison of Ga2O3 thin films doped with different concentrations of In elements[163]MSM结构日盲紫外探测器 (a) MSM结构示意图[160]; (b) Ga2O3单晶和薄膜的光谱响应对比[160]; (c) MSM结构[162]; (d) Ga2O3薄膜不同气氛退火的光谱响应对比[161]; (e)不同氧压下生长的Ga2O3薄膜的光谱响应对比[162]; (f)不同In掺杂的Ga2O3薄膜的光谱响应对比图[163]
    Fig. 25. MSM structure solar-blind ultraviolet photodetector: (a) Schematic diagram of MSM structure[160]; (b) spectral response comparison of Ga2O3 single crystal and thin film[160]; (c) MSM structure[162]; (d) spectral response comparison of Ga2O3 thin films annealed in different atmospheres[161]; (e) spectral response comparison of Ga2O3 thin films grown under different oxygen pressures[162]; (f) spectral response comparison of Ga2O3 thin films doped with different concentrations of In elements[163]MSM结构日盲紫外探测器 (a) MSM结构示意图[160]; (b) Ga2O3单晶和薄膜的光谱响应对比[160]; (c) MSM结构[162]; (d) Ga2O3薄膜不同气氛退火的光谱响应对比[161]; (e)不同氧压下生长的Ga2O3薄膜的光谱响应对比[162]; (f)不同In掺杂的Ga2O3薄膜的光谱响应对比图[163]
    Solar-blind ultraviolet photodetector based on a-Ga2O3 amorphous film[169]: (a) Schematic diagram of device structure with quartz substrate; (b) spectral response; (c) the decay of photoresponse; (d) schematic diagram of device structure with flexible substratea-Ga2O3非晶薄膜日盲紫外探测器[169] (a)以石英为衬底的器件结构示意图; (b)光谱响应; (c)光衰减测试; (d)以柔性为衬底的器件结构示意图
    Fig. 26. Solar-blind ultraviolet photodetector based on a-Ga2O3 amorphous film[169]: (a) Schematic diagram of device structure with quartz substrate; (b) spectral response; (c) the decay of photoresponse; (d) schematic diagram of device structure with flexible substrate a-Ga2O3非晶薄膜日盲紫外探测器[169]  (a)以石英为衬底的器件结构示意图; (b)光谱响应; (c)光衰减测试; (d)以柔性为衬底的器件结构示意图
    Solar-blind ultraviolet photodetector based on a-Ga2O3 amorphous film[171]: Schematic diagram of device structure with glass substrate (a) and I-V cures in dark and under the illumination of 253 nm light (b); Schematic diagram of device structure with polyimide substrate (c) and I-V cures in dark and under the illumination of 253 nm light (d)a-GaOx非晶薄膜日盲紫外探测器[171] (a)以玻璃为衬底的器件结构示意图; (b)黑暗和253 nm光照下的I–V曲线; 以聚酰亚胺为衬底的器件结构示意图(c)及黑暗和253 nm光照下的I–V曲线(d)
    Fig. 27. Solar-blind ultraviolet photodetector based on a-Ga2O3 amorphous film[171]: Schematic diagram of device structure with glass substrate (a) and I-V cures in dark and under the illumination of 253 nm light (b); Schematic diagram of device structure with polyimide substrate (c) and I-V cures in dark and under the illumination of 253 nm light (d) a-GaOx非晶薄膜日盲紫外探测器[171]  (a)以玻璃为衬底的器件结构示意图; (b)黑暗和253 nm光照下的I–V曲线; 以聚酰亚胺为衬底的器件结构示意图(c)及黑暗和253 nm光照下的I–V曲线(d)
    Solar-blind ultraviolet photodetector based on α-Ga2O3/ZnO heterojunction[172] : (a) Spectral response; (b) variation of gain with bias; (c) transient photoresponse characteristics; (d) schematic diagram of energy band structure and device structureα-Ga2O3/ZnO异质结日盲紫外探测器[172] (a)光谱响应; (b)增益随偏压的变化; (c)瞬态光响应特性; (d)能带结构及器件结构示意图
    Fig. 28. Solar-blind ultraviolet photodetector based on α-Ga2O3/ZnO heterojunction[172] : (a) Spectral response; (b) variation of gain with bias; (c) transient photoresponse characteristics; (d) schematic diagram of energy band structure and device structure α-Ga2O3/ZnO异质结日盲紫外探测器[172]  (a)光谱响应; (b)增益随偏压的变化; (c)瞬态光响应特性; (d)能带结构及器件结构示意图
    Solar-blind ultraviolet photodetector based on β-Ga2O3 thin film grown using N2O as the reaction gas: (a) Schematic diagram of growth principle[176]; (b) I-V cures in dark and under 255 nm light illumination, and schematic diagram of MSM structure[176]; (c) spectral response and photoresponsivity under different bias[176]; (d) schematic diagram of graphene/β-Ga2O3/GaN devices[177]; (e) spectral response[177]; (f) energy band structure diagram[177]以N2O为反应气体获得的β-Ga2O3薄膜日盲紫外探测器 (a)生长原理示意图[176]; (b)黑暗和255 nm光照下的I–V曲线及MSM结构示意图[176]; (c)光谱响应及不同偏压下的光响应度[176]; (d)石墨烯/β-Ga2O3/GaN器件结构示意图[177]; (e)光谱响应[177]; (f)能带结构示意图[177]
    Fig. 29. Solar-blind ultraviolet photodetector based on β-Ga2O3 thin film grown using N2O as the reaction gas: (a) Schematic diagram of growth principle[176]; (b) I-V cures in dark and under 255 nm light illumination, and schematic diagram of MSM structure[176]; (c) spectral response and photoresponsivity under different bias[176]; (d) schematic diagram of graphene/β-Ga2O3/GaN devices[177]; (e) spectral response[177]; (f) energy band structure diagram[177]以N2O为反应气体获得的β-Ga2O3薄膜日盲紫外探测器 (a)生长原理示意图[176]; (b)黑暗和255 nm光照下的I–V曲线及MSM结构示意图[176]; (c)光谱响应及不同偏压下的光响应度[176]; (d)石墨烯/β-Ga2O3/GaN器件结构示意图[177]; (e)光谱响应[177]; (f)能带结构示意图[177]
    材料SiGaAsGaP4H-SiCZnOGaNß-Ga2O3DiamondAlNMgO
    带隙Eg/eV 1.11.432.273.33.353.44.2—4.95.56.27.8
    迁移率 ${\text{μ}}$/cm2·Vs–114008500350100020012003002000135
    击穿电场强度Eb/MV·cm–10.30.61.02.53.38102
    相对介电常数ε11.812.911.19.78.79105.58.59.9
    导热率/W·cm–1·K–11.50.551.12.70.62.10.23[010] 0.13[100]103.2
    巴利加优值/ $\varepsilon {\text{μ}} {E_{\rm{b}}}^3$115340870344424664
    Table 1.

    Comparison of basic physical properties of β-Ga2O3 with mainstream semiconductor materials[25]

    β-Ga2O3与主流半导体材料的基本物性比较[25]

    薄膜类型电导率/S·cm–1面电阻/Ω·sq–1载流子浓度/cm–3迁移率/cm2·V–1·s–1透过率/%参考文献
    Ga2O3薄膜 7.6---85[80]
    Sn:Ga2O3薄膜 1-1.4 × 10190.4480[78]
    Sn:Ga2O3薄膜 8.2--< 0.4480[24]
    Sn:Ga2O3薄膜 8.3--12.0385[81]
    Sn:Ga2O3薄膜 32.3-2.4 × 10200.7488[82]
    Sn:Ga2O3单晶 23.4-2.3 × 101864.785[79]
    (Ga, In)2O3薄膜 1.72 × 103-5 × 1020-> 95[83]
    Ga2O3/ITO薄膜 -164--> 94[84]
    Ga2O3/ITO薄膜 -49--93.8[85]
    Ag/Ga2O3薄膜 -42--91[86]
    Ga2O3/Cu/ITO -50--86[87]
    Table 2.

    Parameters and indicators of Ga2O3-based transparent conductive electrode films

    Ga2O3基透明导电电极薄膜的各参数指标汇总

    通信类别非视距通信抗干扰、防窃听相对运动信号接收传播距离调控受环境气候时间影响
    无线电通信易被干扰和窃听很差受环境影响
    激光通信抗干扰、防窃听较差受环境影响
    红外通信较易干扰、防窃听较差受环境时间影响
    紫外通信抗干扰、防窃听很好很小、全天候
    Table 3.

    Comparison of several wireless communications

    几种无线通信的比较

    光电探测器类型光响应度/A·W–1量子效率/%暗电流/A光暗比响应时间/s参考文献
    Ga2O3纳米线 --10–12≈ 2 × 1032.2 × 10–1[91]
    Ga2O3纳米线 --< 10–123 × 104< 2 × 10–2[88]
    Ga2O3纳米线 8.0 × 10–40.392.4 × 10–10≈ 102-[92]
    Ga2O3纳米线 3.4 × 10–31.37-≈ 102-[93]
    ZnO/Ga2O3核壳微米线 1.3 × 103(–6 V) -10–10≈ 1062 × 10–5[100]
    ZnO/Ga2O3核壳微米线 9.7 × 10–3(0 V) -10–10≈ 7 × 10210–4[101]
    Ga2O3纳米线 6 × 10–4-10–11≈ 1026.4 × 10–5[102]
    Ga2O3纳米线 3.77 × 1022.0 × 10510–111030.21[107]
    石墨烯/Ga2O3纳米线 1.85 × 10-1-10–5-8 × 10–3[108]
    Ga2O3纳米片 3.31.6 × 10310–9103 × 10–2[96]
    Ga2O3纳米花(γ) --10–92.2 × 10210–1[97]
    Ga2O3纳米带 3.37 × 1011.67 × 10410–134.0 × 1028.6 × 101[94]
    Ga2O3纳米带 8.51 × 1024.2 × 10310–13≈ 103< 3 × 10–1[98]
    Ga2O3纳米带 1.93 × 1019.4 × 10310–10≈ 104< 2 × 10–2[99]
    In:Ga2O3纳米带 5.47 × 1022.72 × 10510–139.1 × 1021[95]
    Ga2O3微米带 1.8 × 105(–30 V) 8.8 × 10510–62.570.67[103]
    Ga2O3微米带 --10–4-1.4[104]
    Ga2O3微米带 1.68-10–131.9 × 1030.53[105]
    石墨烯/Ga2O3微米带 2.98 × 101-10–13≈ 104-[106]
    Ga2O3单晶 2.6—8.7-10–10≈ 103-[109]
    Ga2O3单晶 3.7 × 10–21.8 × 10110–101.5 × 1049 × 10–3[89]
    Ga2O3单晶 103-10–10≈ 106-[110]
    Ga2O3单晶 4.32.1 × 10110–11105-[111]
    石墨烯/Ga2O3单晶 3.93 × 1011.96 × 10410–61032.2 × 102[112]
    Ga2O3单晶 5 × 10–2-10–51022.4 × 10–1[160]
    Ga2O3单晶 3 × 10–3-10–81011.4 × 10–1[113]
    Ga2O3薄膜 8 × 10–5----[116]
    Ga2O3薄膜 3.7 × 10–21.8 × 10110–9--[90]
    Ga2O3薄膜 4.53 × 10–1> 10210–10105-[117]
    Ga2O3薄膜 ≈ 101-10–10103-[118]
    Ga2O3薄膜 ≈ 101-10–7103-[119]
    Ga2O3薄膜 ≈ 102-10–10102-[120]
    Ga2O3薄膜 --10–11105-[122]
    Ga2O3薄膜 7.6 × 10–1-10–1065 × 10–2[152]
    Ga2O3薄膜 1.7 × 1018.2 × 10310–98.5 × 106-[153]
    Ga2O3薄膜 --10–111028 × 10–1[154]
    Ga2O3薄膜 9.03 × 10–1-10–11105-[155]
    Ga2O3薄膜 2.59 × 1027.9 × 10410–101044 × 10–1[156]
    Ga2O3薄膜 --10–715-[157]
    Ga2O3薄膜/晶体 1.88.7 × 10210–636.9-[158]
    a-GaOx非晶薄膜 7.0 × 101-10–101.2 × 1052 × 10–2[159]
    Ga2O3薄膜 4.2-10–111.6 × 1044 × 10–2[159]
    Ga2O3薄膜 9 × 10–3-10–51011.8 × 10–1[160]
    Al:Ga2O3薄膜 1.57.8 × 102---[164]
    Si:Ga2O3薄膜 6 × 1013 × 104-9-[166]
    Si:Ga2O3薄膜 3.6 × 1011.75 × 104-9-[167]
    Zn:Ga2O3薄膜 2.1 × 102-10–115 × 1041.4[168]
    Ga2O3非晶薄膜 1.9 × 10–1-10–121061.9 × 10–5[169]
    Ga2O3非晶薄膜 4.5 × 101-10–101042.97 × 10–6[171]
    Ga2O3薄膜 1.5-10–9103-[175]
    Ga2O3薄膜 0.291.3410–81.6 × 1030.1[173]
    Ga2O3薄膜 0.11-10–93.5 × 1030.45[174]
    Ga2O3薄膜 0.14-10–111.4 × 1060.2[174]
    Ga2O3薄膜 1.5-10–8103-[173]
    Ga2O3薄膜 2.6 × 101-10–81040.18[176]
    石墨烯/Ga2O3薄膜 1.28 × 101-10–8-2 × 10–3[177]
    Ga2O3薄膜 9.6 × 1014.76 × 10410–6--[180]
    Ga2O3薄膜 5.86 × 10–5-10–91.8 × 1010.1[181]
    Ga2O3薄膜 1.5 × 1027 × 10410–111051.3[165]
    Ga2O3薄膜 1 × 10–1-10–8--[178]
    Ga2O3薄膜 --10–868.6 × 10–1[123]
    Ga2O3薄膜 --10–91.3 × 1016.2 × 10–1[126]
    Ga2O3/Ga/Ga2O3薄膜 2.854-10–118×105-[170]
    Mn:Ga2O3薄膜 7 × 10–23.6 × 10110–96.7 × 1012.8 × 10–1[127]
    α-Ga2O3薄膜 1.5 × 10–27.3910–93 × 101-[137]
    α-Sn:Ga2O3薄膜 9.6 × 10–2-10–91.4 × 1021.08[132]
    α-Sn:Ga2O3薄膜 --10–748.73[131]
    ε-Sn:Ga2O3薄膜 6.05 × 10–33.0210–946.46-[133]
    β-Sn:Ga2O3薄膜 3.61 × 10–2-10–8191.37[166]
    Zn:Ga2O3薄膜 --10–921.23[134]
    Er:Ga2O3薄膜 --10–92.51.6 × 10–1[76]
    Au NPs/Ga2O3薄膜 102-10–6> 2 × 102-[139]
    Ga2O3/p-Si异质结 3.7 × 1021.8 × 10510–89.4 × 1021.8[143]
    Ga2O3/ZnO异质结 3.5 × 10–11.7 × 10210–101.5 × 1016.2 × 10–1[144]
    Ga2O3/NSTO异质结 4.3 × 1012.1 × 10410–62 × 1017 × 10–2[142]
    Ga2O3/Ga:ZnO异质结 7.6 × 10–4-10–92.6 × 1022.7 × 10–1[145]
    p-Si/i-SiC/n-Ga2O3--10–85.4 × 103-[148]
    石墨烯/Ga2O3/SiC 1.8 × 10–1-10–56.3 × 1011.7[149]
    石墨烯/Ga2O3/石墨烯 9.66-10–98.3 × 1010.96[138]
    Ga2O3/SiC/Al2O3--10–97.7-[141]
    Ga2O3/Al2O31.4-10–79.041.26[140]
    Ga2O3/SiC异质结 7 × 10–2-10–10-9 × 10–3[121]
    Ga2O3/GaN异质结 5.4 × 10–2-10–61.5 × 1028 × 10–2[146]
    Sn:Ga2O3/GaN异质结 3.05-10–111041.8 × 10–2[147]
    α-Ga2O3/ZnO异质结 1.1 × 104(–40 V) -10–12-2.4 × 10–4[172]
    Ga2O3/金刚石异质结 2 × 10–4-10–93.7 × 101-[179]
    Table 4.

    Summary of parameters and indicators of Ga2O3 based solar-blind ultraviolet photodetector.

    Ga2O3基日盲紫外探测器的各参数指标汇总

    Dao-You Guo, Pei-Gang Li, Zheng-Wei Chen, Zhen-Ping Wu, Wei-Hua Tang. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector [J]. Acta Physica Sinica, 2019, 68(7): 078501-1
    Download Citation