• Journal of Semiconductors
  • Vol. 41, Issue 8, 082003 (2020)
Carolien Castenmiller and Harold J. W. Zandvliet
Author Affiliations
  • Physics of Interfaces and Nanomaterials & MESA + Institute for Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands
  • show less
    DOI: 10.1088/1674-4926/41/8/082003 Cite this Article
    Carolien Castenmiller, Harold J. W. Zandvliet. On the mystery of the absence of a spin-orbit gap in scanning tunneling microscopy spectra of germanene[J]. Journal of Semiconductors, 2020, 41(8): 082003 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] A K Geim, K S Novoselov. The rise of graphene. Nat Mater, 6, 183(2007).

    [3] K Takeda, K Shiraishi. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B, 50, 14916(1994).

    [4] P Vogt, P de Padova, C Quaresima et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 108, 155501(2012).

    [5] P Bampoulis, L Zhang, A Safaei et al. Germanene termination of Ge2Pt crystals on Ge(110). J Phys Condens Matter, 26, 442001(2014).

    [6] F F Zhu, W J Chen, Y Xu et al. Epitaxial growth of two-dimensional stanene. Nat Mater, 14, 1020(2015).

    [7] S Cahangirov, M Topsakal, E Aktürk et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett, 102, 236804(2009).

    [8] A Acun, L Zhang, P Bampoulis et al. Germanene: the germanium analogue of graphene. J Phys Condens Matter, 27, 443002(2015).

    [9] C L Kane, E J Mele. Z2 topological order and the quantum spin Hall effect. Phys Rev Lett, 95, 146802(2005).

    [10] C L Kane, E J Mele. Quantum spin Hall effect in graphene. Phys Rev Lett, 95, 226801(2005).

    [11] C C Liu, W X Feng, Y G Yao. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 107, 076802(2011).

    [12] B Borca, C Castenmiller, M Tsvetanova et al. Image potential states of germanene. 2D Mater, 7, 035021(2020).

    [13] R van Bremen, P Bampoulis, J Aprojanz et al. Ge2Pt hut clusters: A substrate for germanene. J Appl Phys, 124, 125301(2018).

    [14] L Zhang, P Bampoulis, A van Houselt et al. Two-dimensional Dirac signature of germanene. Appl Phys Lett, 107, 111605(2015).

    [15] C J Walhout, A Acun, L Zhang et al. Scanning tunneling spectroscopy study of the Dirac spectrum of germanene. J Phys Condens Matter, 28, 284006(2016).

    [16] L Zhang, P Bampoulis, A Rudenko et al. Structural and electronic properties of germanene on MoS2. Phys Rev Lett, 116, 256804(2016).

    [17] Z H Qin, J B Pan, S Z Lu et al. Direct evidence of Dirac signature in bilayer germanene Islands on Cu(111). Adv Mater, 29, 1606046(2017).

    [18] M Ezawa. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys, 14, 033003(2012).

    [19] C C Liu, H Jiang, Y G Yao. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B, 84, 195430(2011).

    Carolien Castenmiller, Harold J. W. Zandvliet. On the mystery of the absence of a spin-orbit gap in scanning tunneling microscopy spectra of germanene[J]. Journal of Semiconductors, 2020, 41(8): 082003
    Download Citation