• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516023 (2022)
Jianwei Huang and Ting Liu*
Author Affiliations
  • College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian , China
  • show less
    DOI: 10.3788/LOP202259.1516023 Cite this Article Set citation alerts
    Jianwei Huang, Ting Liu. Review of Research on Optical Fiber Fluorescence Temperature Probes[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516023 Copy Citation Text show less
    References

    [1] Bang J, Lee W S, Park B et al. Highly sensitive temperature sensor: ligand-treated Ag nanocrystal thin films on PDMS with thermal expansion strategy[J]. Advanced Functional Materials, 29, 1903047(2019).

    [2] Sultan M A. Performance of different temperature sensors in standard fire resistance test furnaces[J]. Fire Technology, 46, 853-881(2010).

    [3] Lee Y T, Choi W J, Chae Y C. Resistor-based temperature sensors: technical review[J]. Journal of Integrated Circuits and Systems, 7, 24-29(2021).

    [4] Lee J M, Cho I T, Lee J H et al. Enhancement of temperature sensitivity for metal-insulator-semiconductor temperature sensors by using Bi2Mg2/3Nb4/3O7 film[J]. Japanese Journal of Applied Physics, 51, 080206(2012).

    [5] Shimada K, Takashima H, Wang R P et al. Capacitance temperature sensor using ferroelectric (Sr0.95Ca0.05)TiO3 perovskite[J]. Ferroelectrics, 331, 141-145(2006).

    [6] Engert J, Beyer J, Drung D et al. A noise thermometer for practical thermometry at low temperatures[J]. International Journal of Thermophysics, 28, 1800-1811(2007).

    [7] Li L, Peng B, Wang Y et al. A novel design method for SAW temperature sensor with monotonic and linear frequency-temperature behavior in wide temperature range[J]. Sensors and Actuators A: Physical, 307, 111982(2020).

    [8] Hankiewicz J H, Alghamdi N, Hammelev N M et al. Zinc doped copper ferrite particles as temperature sensors for magnetic resonance imaging[J]. AIP Advances, 7, 056703(2016).

    [9] Hu B Y, Wen F R, Cheng Y S et al. Simultaneous measurement of temperature and pressure based on cascaded Fabry-Perot interferometer[J]. Laser & Optoelectronics Progress, 58, 1906006(2021).

    [10] Fu G W, Liu C, Wang M M et al. Tapered multimode fiber temperature sensor based on surface graphene modification[J]. Acta Optica Sinica, 41, 0906002(2021).

    [11] Chen Z Y, He J, Xu X Z et al. High-temperature sensor array based on fiber Bragg gratings fabricated by femtosecond laser point-by-point method[J]. Acta Optica Sinica, 41, 1306002(2021).

    [12] You Y, Guo H Y, Li W et al. Surface-mode resonance coupling effect and high-temperature sensing characteristics in hollow-core photonic bandgap fibers[J]. Acta Optica Sinica, 41, 1306005(2021).

    [13] Guo H R, Liu K, Jiang J F et al. Optical fiber high and low temperature mechanical and thermal multi-parameter sensing system based on tunable laser[J]. Chinese Journal of Lasers, 48, 1906003(2021).

    [14] Wang W Y, Yin X J, Wu J et al. Quantum dots-based multiplexed fiber-optic temperature sensors[J]. IEEE Sensors Journal, 16, 2437-2441(2016).

    [15] Xiong J H, Zhao M S, Han X T et al. Real-time micro-scale temperature imaging at low cost based on fluorescent intensity ratio[J]. Scientific Reports, 7, 41311(2017).

    [16] Vyšniauskas A, Ding D, Qurashi M et al. Tuning the sensitivity of fluorescent porphyrin dimers to viscosity and temperature[J]. Chemistry, 23, 11001-11010(2017).

    [17] Wu J, Yin X J, Wang W Y et al. All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution[J]. Applied Optics, 55, 974-978(2016).

    [18] Sun S S, Zhang J H, Wang Z et al. Anomalous thermally-activated NIR emission of ESIPT modulated Nd-complexes for optical fiber sensing devices[J]. Chemical Communications, 54, 6304-6307(2018).

    [19] Shahzad M K, Zhang Y D, Khan M U et al. Optical thermometry probe via fiber containing β-NaLuF4∶Yb3+/Er3+/Tm3+[J]. Current Applied Physics, 19, 739-744(2019).

    [20] Pal S, Sun T, Grattan K T V et al. Bragg grating performance in Er-Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 ℃) and strain[J]. Review of Scientific Instruments, 74, 4858-4862(2003).

    [21] Rosso L, Fernicola V, Pedrazzo F. Multi-channel optical fiber thermometer for PEM fuel-cell applications[J]. International Journal of Thermophysics, 32, 1440-1447(2011).

    [22] Zhang G S, Yu B L, Cao Z G et al. A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology[J]. IEEE Photonics Journal, 12, 7101008(2020).

    [23] Castrellon-Uribe J, Garcia-Torales G. Remote temperature sensor based on the up-conversion fluorescence power ratio of an erbium-doped silica fiber pumped at 975 nm[J]. Fiber and Integrated Optics, 29, 272-283(2010).

    [24] Alvarez-Chavez J A, Perez-Sanchez G G, Ceballos-Herrera D E et al. Temperature sensing characteristics of tapered Yb-doped fiber amplifiers[J]. Optik, 124, 5818-5821(2013).

    [25] Steinegger A, Klimant I, Borisov S M. Purely organic dyes with thermally activated delayed fluorescence-a versatile class of indicators for optical temperature sensing[J]. Advanced Optical Materials, 5, 1700372(2017).

    [26] Li X F, Qian C Y, Shen R J et al. Fluorescence fiber optic temperature sensor based on fused upconversion luminescent nanoparticles[J]. Optics Express, 26, 30753-30761(2018).

    [27] Guo J J, Zhou B Q, Yang C X et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring[J]. Advanced Functional Materials, 29, 1902898(2019).

    [28] Bao R J, Yu L, Ye L H et al. Compact and sensitive Er3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on up-conversion luminescence[J]. Sensors and Actuators A: Physical, 269, 182-187(2018).

    [29] Tymiński A, Śmiechowicz E, Martín I R et al. Ultraviolet- and near-infrared-excitable LaPO4∶Yb3+/Tm3+/Ln3+ (Ln = Eu, Tb) nanoparticles for luminescent fibers and optical thermometers[J]. ACS Applied Nano Materials, 3, 6541-6551(2020).

    [30] Zhang Y, Liu Z, Li Y et al. Electrospun fibers embedded with microcrystal for optical temperature sensing[J]. Journal of Alloys and Compounds, 855, 157410(2021).

    [31] Shi M Y, Li X Q, Zhu Y N et al. Preparation and luminescence performance of thermochromic luminescent fiber based on reversible thermochromic red pigment[J]. Journal of Materials Science: Materials in Electronics, 32, 9074-9086(2021).

    [32] Yang K, Xu R, Meng Q Y et al. Er3+/Yb3+ co-doped TeO2-ZnO-ZnF2-La2O3 glass with a high fluorescence intensity ratio for an all-fiber temperature sensor[J]. Journal of Luminescence, 222, 117145(2020).

    [33] Potyrailo R A, Szumlas A W, Danielson T L et al. A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre[J]. Measurement Science and Technology, 16, 235-241(2005).

    [34] Seat H C, Sharp J H. Er3++Yb3+-codoped Al2O3 crystal fibres for high-temperature sensing[J]. Measurement Science and Technology, 14, 279-285(2003).

    [35] Guo H Q, Tao S Q. An active core fiber-optic temperature sensor using an Eu(Ⅲ)-doped sol-gel silica fiber as a temperature indicator[J]. IEEE Sensors Journal, 7, 953-954(2007).

    [36] Castrellon-Uribe J. Experimental results of the performance of a laser fiber as a remote sensor of temperature[J]. Optics and Lasers in Engineering, 43, 633-644(2005).

    [37] Ding M J, Mizuno Y, Nakamura K. Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber[J]. Optics Express, 22, 24706-24712(2014).

    [38] Khlaifi H, Zrelli A, Ezzedine T. Optical fiber sensors in border detection application: temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio[J]. Optik, 229, 166257(2021).

    [39] Trpkovski S, Wade S A, Baxter G W et al. Dual temperature and strain sensor using a combined fiber Bragg grating and fluorescence intensity ratio technique in Er3+-doped fiber[J]. Review of Scientific Instruments, 74, 2880-2885(2003).

    [40] Strojnik M, Paez G, Castrellon-Uribe J. Radiometric analysis of a fiber optic temperature sensor[J]. Optical Engineering, 41, 1255-1261(2002).

    [41] Maurice E, Monnom G, Ostrowsky D B et al. 1.2-µm transitions in erbium-doped fibers: the possibility of quasi-distributed temperature sensors[J]. Applied Optics, 34, 4196-4199(1995).

    [42] Wade S A, Collins S F, Grattan K T et al. Strain-independent temperature measurement by use of a fluorescence intensity ratio technique in optical fiber[J]. Applied Optics, 39, 3050-3052(2000).

    [43] Maurice E, Wade S A, Collins S F et al. Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber[J]. Applied Optics, 36, 8264-8269(1997).

    [44] Sidiroglou F, Wade S A, Dragomir N M et al. Effects of high-temperature heat treatment on Nd3+-doped optical fibers for use in fluorescence intensity ratio based temperature sensing[J]. Review of Scientific Instruments, 74, 3524-3530(2003).

    [45] Wade S A, Muscat J C, Collins S F et al. Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique[J]. Review of Scientific Instruments, 70, 4279-4282(1999).

    [46] Berthou H, Jörgensen C K. Optical-fiber temperature sensor based on upconversion-excited fluorescence[J]. Optics Letters, 15, 1100-1102(1990).

    [47] Wade S A, Collins S F, Baxter G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics, 94, 4743-4756(2003).

    [48] Ramirez-Granados D, Barmenkov Y, Kir'yanov A et al. The use of yttria-alumino-silicate bismuth doped fibers for temperature sensing[J]. IEEE Photonics Journal, 7, 6802112(2015).

    [49] Wade S A, Collins S F, Baxter G W et al. Effect of strain on temperature measurements using the fluorescence intensity ratio technique (with Nd3+- and Yb3+-doped silica fibers)[J]. Review of Scientific Instruments, 72, 3180-3185(2001).

    [50] Trpkovski S, Wade S A, Collins S F et al. Er3+∶Yb3+doped fibre with embedded FBG for simultaneous measurement of temperature and longitudinal strain[J]. Measurement Science and Technology, 16, 488-496(2005).

    [51] Baek S, Jeong Y, Nilsson J et al. Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications[J]. Optical Fiber Technology, 12, 10-19(2006).

    [52] Maurice E, Monnom G, Dussardier B et al. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors[J]. Applied Optics, 34, 8019-8025(1995).

    [53] Pal S, Shen Y H, Mandal J et al. Simultaneous measurement of strain (to 2000 με) and temperature (to 600 ℃) using a combined Sb-Er-Ge-codoped fiber-fluorescence and grating-based technique[J]. IEEE Sensors Journal, 5, 1462-1468(2005).

    [54] Lopez I S, Luisa Mendonça A, Fernandes M et al. Europium complex-based thermochromic sensor for integration in plastic optical fibres[J]. Optical Materials, 34, 1447-1450(2012).

    [55] Musolino S, Schartner E P, Tsiminis G et al. A portable optical fiber probe for in vivo brain temperature measurements[J]. Biomedical Optics Express, 7, 3069-3078(2016).

    [56] Sánchez-Escobar S, Hernández-Cordero J. Fiber optic fluorescence temperature sensors using up-conversion from rare-earth polymer composites[J]. Optics Letters, 44, 1194-1197(2019).

    [57] Kumar R, Binetti L, Nguyen T H et al. Optical fibre thermometry using ratiometric green emission of an upconverting nanoparticle-polydimethylsiloxane composite[J]. Sensors and Actuators A: Physical, 312, 112083(2020).

    [58] An N, Ye L H, Bao R J et al. Up-conversion luminescence characteristics and temperature sensing of Y2O3∶Ho3+/Yb3+ single crystal fiber[J]. Journal of Luminescence, 215, 116657(2019).

    [59] Yu L, Ye L H, Bao R J et al. Sensitivity-enhanced Tm3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on upconversion emissions[J]. Optics Communications, 410, 632-636(2018).

    [60] Bao R J, An N, Ye L H et al. Wide-range temperature sensor based on enhanced up-conversion luminescence in Er3+/Yb3+ co-doped Y2O3 crystal fiber[J]. Optical Fiber Technology, 52, 101989(2019).

    [61] Wade S A, Forsyth D I, Grattan K T V et al. Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique[J]. Review of Scientific Instruments, 72, 3186-3190(2001).

    [62] Sun T, Zhang Z Y, Grattan K T V et al. Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers[J]. Review of Scientific Instruments, 70, 1447-1451(1999).

    [63] Arnaud A, Forsyth D I, Sun T et al. Strain and temperature effects on erbium-doped fiber for decay-time based sensing[J]. Review of Scientific Instruments, 71, 104-108(1999).

    [64] Forsyth D I, Sun T, Grattan K T V et al. Characteristics of doped optical fiber for fluorescence-based fiber optic temperature systems[J]. Review of Scientific Instruments, 74, 5212-5218(2003).

    [65] Sun T, Grattan K T V, Sun W M et al. Rare-earth doped optical fiber approach to an alarm system for fire and heat detection[J]. Review of Scientific Instruments, 74, 250-255(2003).

    [66] Wade S A, Baxter G W, Collins S F et al. Simultaneous strain-temperature measurement using fluorescence from Yb-doped silica fiber[J]. Review of Scientific Instruments, 71, 2267-2269(2000).

    [67] Newell T C, Peterson P, Gavrielides A et al. Temperature effects on the emission properties of Yb-doped optical fibers[J]. Optics Communications, 273, 256-259(2007).

    [68] Moore S W, Barnett T, Reichardt T A et al. Optical properties of Yb+3-doped fibers and fiber lasers at high temperature[J]. Optics Communications, 284, 5774-5780(2011).

    [69] Mitchell I R, Farrell P M, Baxter G W et al. Analysis of dopant concentration effects in praseodymium-based fluorescent fiber optic temperature sensors[J]. Review of Scientific Instruments, 71, 100-103(1999).

    [70] Liu T, Fernando G F, Zhang Z Y et al. Simultaneous strain and temperature measurements in composites using extrinsic Fabry-Perot interferometric and intrinsic rare-earth doped fiber sensors[J]. Sensors and Actuators A: Physical, 80, 208-215(2000).

    [71] Shen Y H, Zhao W Z, Sun T et al. Characterization of an optical fiber thermometer using Tm3+∶YAG crystal, based on the fluorescence lifetime approach[J]. Sensors and Actuators A: Physical, 109, 53-59(2003).

    [72] Zhang Z Y, Grattan K T V, Meggitt B T. Thulium-doped fiber optic decay-time temperature sensors: characterization of high temperature performance[J]. Review of Scientific Instruments, 71, 1614-1620(2000).

    [73] Forsyth D I, Wade S A, Sun T et al. Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber[J]. Applied Optics, 41, 6585-6592(2002).

    [74] Sun T, Zhang Z Y, Grattan K T V. Erbium/ytterbium fluorescence based fiber optic temperature sensor system[J]. Review of Scientific Instruments, 71, 4017-4022(2000).

    [75] Kennedy J L, Djeu N. Operation of Yb: YAG fiber-optic temperature sensor up to 1600 ℃[J]. Sensors and Actuators A: Physical, 100, 187-191(2002).

    [76] Dalzell C J, Han T P J, Ruddock I S et al. Two-photon excited fluorescence in rare-earth doped optical fiber for applications in distributed sensing of temperature[J]. IEEE Sensors Journal, 12, 51-54(2012).

    [77] Gámez M A m, Vicente S G C, Kir’yanov A V et al. Effect of erbium-ytterbium on the sensitivity of sensors of temperature based on fibre optic preform Er-Yb∶BaF2-P2O5[J]. Measurement Science and Technology, 18, 3253-3256(2007).

    [78] Fernicola V C, Galleano R. A multi-channel optical fibre thermometer[J]. Measurement, 37, 1-8(2005).

    [79] Stanciu M, Grattan K T V. LiCAF crystal-based optical fiber thermometry[J]. Sensors and Actuators A: Physical, 99, 277-283(2002).

    [80] Henry D M, Herringer J H, Djeu N. Response of 1.6 μm Er: Y3Al5O12 fiber-optic temperature sensor up to 1520 K[J]. Applied Physics Letters, 74, 3447-3449(1999).

    [81] Shen Y H, Zhao W Z, He J L et al. Fluorescence decay characteristic of Tm-doped YAG crystal fiber for sensor applications, investigated from room temperature to 1400 ℃[J]. IEEE Sensors Journal, 3, 507-512(2003).

    [82] Ye L H, Zhang J F, Shi Y. Growth and characteristics of Cr3+∶YAG crystal fiber for fluorescence decay temperature sensor[J]. Review of Scientific Instruments, 77, 054901(2006).

    [83] Seat H C, Sharp J H, Zhang Z Y et al. Single-crystal ruby fiber temperature sensor[J]. Sensors and Actuators A: Physical, 101, 24-29(2002).

    [84] Seat H C, Sharp J H. Dedicated temperature sensing with C-axis oriented single-crystal ruby (Cr3+∶Al2O3) fibers: temperature and strain dependences of R-line fluorescence[J]. IEEE Transactions on Instrumentation and Measurement, 53, 140-154(2004).

    [85] Shen Y H, Pal S, Mandal J et al. Investigation of the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers[J]. Optics Communications, 237, 301-308(2004).

    [86] García Moreda F J, Arregui F J, Achaerandio M et al. Study of indicators for the development of fluorescence based optical fiber temperature sensors[J]. Sensors and Actuators B: Chemical, 118, 425-432(2006).

    [87] Chu C S, Lin C A. Optical fiber sensor for dual sensing of temperature and oxygen based on PtTFPP/CF embedded in sol-gel matrix[J]. Sensors and Actuators B: Chemical, 195, 259-265(2014).

    [88] Zhao F, Kim J S. Optical fiber temperature sensor utilizing alloyed ZnxCd1-xS quantum dots[J]. Journal of Nanoscience and Nanotechnology, 14, 6008-6011(2014).

    [89] Zhao F, Kim J S. The effect of temperature on photoluminescence enhancement of quantum dots in brain slices[J]. Journal of Nanoscience and Nanotechnology, 17, 2606-2609(2017).

    [90] Zhang H, Ye J T, Wang X L et al. Highly reliable all-fiber temperature sensor based on the fluorescence intensity ratio (FIR) technique in Er3+/Yb3+ co-doped NaYF4 phosphors[J]. Journal of Materials Chemistry C, 7, 15269-15275(2019).

    [91] Ren X T, Gao J, Shi H N et al. A flexible and portable all-fiber temperature sensor based on the upconversion luminescence of octahedral NaBi(WO4)2∶Er3+/Yb3+ phosphors[J]. Dalton Transactions, 50, 917-925(2021).

    [92] Zhao Y T, Pang C L, Wen Z et al. A microfiber temperature sensor based on fluorescence lifetime[J]. Optics Communications, 426, 231-236(2018).

    [93] Tao S Q, Jayaprakash A. A fiber optic temperature sensor with an epoxy-glue membrane as a temperature indicator[J]. Sensors and Actuators B: Chemical, 119, 615-620(2006).

    [94] Li H, Zhang Y D, Shao L et al. Luminescence probe for temperature sensor based on fluorescence intensity ratio[J]. Optical Materials Express, 7, 1077-1083(2017).

    [95] Zhao Y, Chen M Q, Lü R Q et al. Small and practical optical fiber fluorescence temperature sensor[J]. IEEE Transactions on Instrumentation and Measurement, 65, 2406-2411(2016).

    [96] Jiang X F, Lin C, Huang Y Q et al. Hybrid fiber optic sensor, based on the Fabry-Perot interference, assisted with fluorescent material for the simultaneous measurement of temperature and pressure[J]. Sensors, 19, 1097(2019).

    [97] Bravo J, Goicoechea J, Corres J M et al. Encapsulated quantum dot nanofilms inside hollow core optical fibers for temperature measurement[J]. IEEE Sensors Journal, 8, 1368-1374(2008).

    [98] Mai Y F, Li B Y, Zhou G Y et al. Research on temperature sensor using Rhodamine6G film coated microstructure optical fiber[J]. IEEE Sensors Journal, 20, 202-207(2020).

    [99] Zhang M, Li A Z, Yu J B et al. In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+ co-doped tellurite glass microsphere[J]. Optics Letters, 44, 3214-3217(2019).

    [100] Tatar P, Kacik D, Tarjanyi N. Fluorescein filled photonic crystal fiber sensor for simultaneous ultraviolet light and temperature monitoring[J]. Optical Fiber Technology, 30, 8-11(2016).

    [101] Zhao Y, Tong R J, Chen M Q et al. Fluorescence temperature sensor based on GQDs solution encapsulated in hollow core fiber[J]. IEEE Photonics Technology Letters, 29, 1544-1547(2017).

    Jianwei Huang, Ting Liu. Review of Research on Optical Fiber Fluorescence Temperature Probes[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516023
    Download Citation