• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516023 (2022)
Jianwei Huang and Ting Liu*
Author Affiliations
  • College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian , China
  • show less
    DOI: 10.3788/LOP202259.1516023 Cite this Article Set citation alerts
    Jianwei Huang, Ting Liu. Review of Research on Optical Fiber Fluorescence Temperature Probes[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516023 Copy Citation Text show less
    Fluorescence signal processing methods. (a) Fluorescence intensity method[18]; (b) fluorescence intensity ratio method[19]; (c) fluorescence power ratio method[20]; (d) fluorescence lifetime method[21]; (e) fluorescence emission peak wavelength shift method[22]; (f) fluorescence signal-to-noise ratio method [23]; (g) efficiency signal conversion method[24]; (h) self-referenced phase shift method [25]
    Fig. 1. Fluorescence signal processing methods. (a) Fluorescence intensity method[18]; (b) fluorescence intensity ratio method[19]; (c) fluorescence power ratio method[20]; (d) fluorescence lifetime method[21]; (e) fluorescence emission peak wavelength shift method[22]; (f) fluorescence signal-to-noise ratio method [23]; (g) efficiency signal conversion method[24]; (h) self-referenced phase shift method [25]
    Sensing probes prepared by doping methods. (a) Welding method [26]; (b) solution doping method[27]; (c) laser heating pedestal method [28]; (d) codeposition method [29]; (e) electrospinning method [30]; (f) wet spinning method [31]
    Fig. 2. Sensing probes prepared by doping methods. (a) Welding method [26]; (b) solution doping method[27]; (c) laser heating pedestal method [28]; (d) codeposition method [29]; (e) electrospinning method [30]; (f) wet spinning method [31]
    Preparation of sensing probes by chemical modification and physical deposition methods. (a) Chemical modification method[88]; (b) Physical deposition method[90]
    Fig. 3. Preparation of sensing probes by chemical modification and physical deposition methods. (a) Chemical modification method[88]; (b) Physical deposition method[90]
    Encapsulation methods for preparing sensing probes. (a) Encapsulated with epoxy resin[93]; (b) encapsulated with nanocrystalline particles[94]; (c) encapsulated with phosphor[95]; (d) combined package with Fabry-Perot interference cavity[96]
    Fig. 4. Encapsulation methods for preparing sensing probes. (a) Encapsulated with epoxy resin[93]; (b) encapsulated with nanocrystalline particles[94]; (c) encapsulated with phosphor[95]; (d) combined package with Fabry-Perot interference cavity[96]
    Special optical fiber filling methods to prepare sensing probes. (a) Filled with quantum dots[97]; (b) filled with R6G film[98]; (c) embedded with glass microspheres[99]; (d) filled with fluorescein[100]
    Fig. 5. Special optical fiber filling methods to prepare sensing probes. (a) Filled with quantum dots[97]; (b) filled with R6G film[98]; (c) embedded with glass microspheres[99]; (d) filled with fluorescein[100]
    MethodSensitivityStabilityAccuracyAnti-interferenceSignal processingDetection difficulty
    Fluorescence intensity methodhighlowlowlowsimplelow
    Fluorescence intensity ratio methodhighhighnormalhighnormallow
    Fluorescence lifetime methodlowhighnormalhighsimplehigh
    Fluorescence emission peak wavelength shift methodlowhighlowhighnormalnormal
    Fluorescence signal-noise ration methodnormalhighnormalnormalcomplicatedlow
    Efficiency signal conversion methodhighnormalnormalnormalcomplicatedlow
    Self-referenced phase shift methodlownormalnormalhighnormalnormal
    Table 1. Comparison of fluorescence temperature measurement methods
    MethodMixed elementRange /°CWavelength /nmOccasionSensitivityAccuracyDeviationResolutionRef.
    WeldingEr3+26‒60545/532thermocouple0.01 ℃-10.06 ℃36
    Er3+30‒1001530/1565heating platform0.00056 ℃-137
    Er3+30‒110980/1540lab1.2 ℃38
    Er3+18‒150515-533/543-561oven2.2 ℃0.3 ℃39
    Er3+22‒5001535/1552thermal chamber0.000335 ℃-16 ℃20
    Er3+20‒540515-525/555-565thermocouple0.025 K-10.1 K40
    Er3+25‒6001133/1237oven0.008 ℃-141
    Yb3+22‒160905/1064heating platform1 ℃1.5 ℃42
    Yb3+25‒600976/1030oven0.0095 ℃-11 ℃0.6 ℃43
    Nd3+25‒900820-840/880-930oven1.5 ℃44
    Nd3+250‒1500820-840/895-915oven0.0102 ℃-12.5 ℃45
    Er3+, Yb3+30‒150520/550lab46
    NaYF4∶Er3+, Yb3+40‒100525/545oven0.0087‒0.0144 K-126
    Pr3+, Nd3+,Yb3+200‒600

    810-830/866-894

    900-910/

    1051.5-1076.5

    oven0.017 ℃-11 ℃47
    Chemical vapor deposition and solution dopingBi25‒500950-1200/1200-1500oven0.0091‒0.0097 K-148
    Nd3+, Yb3+10‒140

    920-930/1020-1030

    820-840/880-930

    heating platform

    0.0156 ℃-1

    0.0112 ℃-1

    2 ℃49
    Er3+/Yb3+20‒1501040-1070/880-970oven0.3 ℃50
    Er3+, Yb3+25‒3001012.5/1537.5oven

    1 ℃

    10 ℃

    51
    Er3+, Yb3+25‒600530/555oven0.016 dB·℃-11.1 ℃52
    Sb3+, Er3+, Ge3+20‒6001535/1552oven0.000695 ℃-12.8 ℃53
    Solution dopingEu3+25‒100615/450thermocouple54
    Er3+, Yb3+22‒51organism0.00526 K-10.1‒0.3 ℃55
    NaYF4∶Yb, Er25‒70525/545organism0.018 ℃-127

    β-NaLuF4∶Yb3+/

    Tm3+/Er3+

    30‒90521/542lab0.00311 K-119
    NaY0.77Yb0.20Er0.03F425‒100525/550heating platform0.00256 ℃-10.3 ℃56
    NaYF4∶(18%)Yb3+, (2%)Er3+22‒200514‒523/533‒562sand and air bath0.0029 K-12.7 K57
    Laser heating pedestal methodHo3+/Yb3+25‒350549/667oven0.0489 K-158
    Tm3+/Yb3+60‒460660‒740/740‒850thermocouple0.021 K-159
    Er3+, Yb3+25‒450524/546thermocouple0.00486 K-128
    Er3+/Yb3+室温-600502‒542/542‒592electric furnace0.0087 K-160
    CodepositionYb3+/Tm3+、, Eu3+, Tb3+20‒406700/800furnace

    0.024 K-1

    0.022 K-1

    29
    Melt quenchingEr3+/Yb3+30‒287545/523oven0.012 K-11 K0.2%32
    Wet spinningSrAl2O4∶Er3+, Dy3+, Y2O2S∶Eu3+,Mg2+, Ti4+25‒45512‒596/616‒626thermal gravimetric analyzer31
    ElectrospinningNa (Y1-x-yErxYby)F4/PAN(NYF-EY/PAN)30‒150523/542lab0.0148 K-130
    ExtrusionEu3+20‒95623/585gas flow cell1%33
    Table 2. Optical fiber temperature sensing probes based on fluorescence intensity ratio prepared by doping methods
    MethodMixed elementRange /°COccasionSensitivityAccuracyDeviationResolutionRef.
    WeldingEr3+25‒120oven1.2 ℃61
    Er3+30‒150oven0.07 μs·℃-10.02%62
    Er3+25‒150oven0.000247 K-11.8 ℃63
    Er3+0‒600lab64
    Er3+500‒600oven50‒100 ℃65
    Yb3+lab66
    Yb3+-196‒170oven0.00013 ms K-167
    Yb3+23‒977tube furnace68
    Pr3+300‒500oven69
    Nd3+20‒90temperature control room0.98 ℃70
    Tm3+25‒800oven7 μs·℃-11 ℃1 ℃71
    Tm3+25‒1350oven6 ℃72
    Er3+/Yb3+30‒150oven0.8 ℃73
    Er3+/Yb3+0‒850oven5 ℃74
    Yb3+, Tb3+25‒977furnace75
    Chemical vapor deposition and solution dopingPr3+20‒80hot water5%76
    Er3+/Yb3+25‒300oven0.0145 ms·℃-10.35 ms77
    Solution dopingNd3+0‒150microwave oven0.3 ℃78
    Cr3+25‒100battery10 μs·℃-10.3 ℃0.06 ℃21
    Cr3+27‒277electric oven0.625 μs·℃-179
    Laser heating pedestal methodEr3+25‒1274tube furnace0.003 K-180
    Tm3+25‒1200oven3 μs·℃-15 ℃2.5 ℃81
    Cr3+-20‒500copper block heating device1‒250 μs·℃-182
    Cr3+0‒600electric stove0.2 ℃83
    Cr3+0‒923oven4.62%2.4 K84
    Table 3. Optical fiber temperature sensing probes based on fluorescence lifetime prepared by doping methods
    MethodPreparation methodMeasurement rangeStabilityRepeatabilityCost
    Dopingnormallargehighnormalhigh
    Chemical modification and physical depositioncomplicatednormallowlowlow
    Encapsulationsimplenormalhighhighlow
    Special fiber fillingcomplicatedsmallnormallowhigh
    Table 4. Comparison of preparation methods
    Jianwei Huang, Ting Liu. Review of Research on Optical Fiber Fluorescence Temperature Probes[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516023
    Download Citation